These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 34726966)
1. Evaluation of the osteogenic potential of crocin-incorporated collagen scaffold on the bone marrow mesenchymal stem cells. Mirshahi M; Amel Farzad S; Peyvandi M; Hahsemi M; Kalalinia F Drug Dev Ind Pharm; 2021 Sep; 47(9):1439-1446. PubMed ID: 34726966 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the effect of crocin and crocetin, two major compounds extracted from saffron, on osteogenic differentiation of mesenchymal stem cells. Kalalinia F; Ghasim H; Amel Farzad S; Pishavar E; Ramezani M; Hashemi M Life Sci; 2018 Sep; 208():262-267. PubMed ID: 30048694 [TBL] [Abstract][Full Text] [Related]
3. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051 [TBL] [Abstract][Full Text] [Related]
4. PCL/Col I-based magnetic nanocomposite scaffold provides an osteoinductive environment for ADSCs in osteogenic cues-free media conditions. Sadeghzadeh H; Mehdipour A; Dianat-Moghadam H; Salehi R; Khoshfetrat AB; Hassani A; Mohammadnejad D Stem Cell Res Ther; 2022 Apr; 13(1):143. PubMed ID: 35379318 [TBL] [Abstract][Full Text] [Related]
5. Stromal-cell-derived extracellular matrix promotes the proliferation and retains the osteogenic differentiation capacity of mesenchymal stem cells on three-dimensional scaffolds. Antebi B; Zhang Z; Wang Y; Lu Z; Chen XD; Ling J Tissue Eng Part C Methods; 2015 Feb; 21(2):171-81. PubMed ID: 24965227 [TBL] [Abstract][Full Text] [Related]
6. Collagen I gel promotes homogenous osteogenic differentiation of adipose tissue-derived mesenchymal stem cells in serum-derived albumin scaffold. Kang BJ; Kim Y; Lee SH; Kim WH; Woo HM; Kweon OK J Biomater Sci Polym Ed; 2013; 24(10):1233-43. PubMed ID: 23713425 [TBL] [Abstract][Full Text] [Related]
7. Osteogenic differentiation and proliferation potentials of human bone marrow and umbilical cord-derived mesenchymal stem cells on the 3D-printed hydroxyapatite scaffolds. Meesuk L; Suwanprateeb J; Thammarakcharoen F; Tantrawatpan C; Kheolamai P; Palang I; Tantikanlayaporn D; Manochantr S Sci Rep; 2022 Nov; 12(1):19509. PubMed ID: 36376498 [TBL] [Abstract][Full Text] [Related]
8. Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold. Xie J; Peng C; Zhao Q; Wang X; Yuan H; Yang L; Li K; Lou X; Zhang Y Acta Biomater; 2016 Jan; 29():365-379. PubMed ID: 26441129 [TBL] [Abstract][Full Text] [Related]
9. Effect of Nano-HA/Collagen Composite Hydrogels on Osteogenic Behavior of Mesenchymal Stromal Cells. Hayrapetyan A; Bongio M; Leeuwenburgh SC; Jansen JA; van den Beucken JJ Stem Cell Rev Rep; 2016 Jun; 12(3):352-64. PubMed ID: 26803618 [TBL] [Abstract][Full Text] [Related]
10. Osteogenic Potential of Sheep Mesenchymal Stem Cells Preconditioned with BMP-2 and FGF-2 and Seeded on an nHAP-Coated PCL/HAP/β-TCP Scaffold. Stamnitz S; Krawczenko A; Szałaj U; Górecka Ż; Antończyk A; Kiełbowicz Z; Święszkowski W; Łojkowski W; Klimczak A Cells; 2022 Oct; 11(21):. PubMed ID: 36359842 [TBL] [Abstract][Full Text] [Related]
11. A novel hydrogel scaffold contained bioactive glass nanowhisker (BGnW) for osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro. Azizipour E; Aghamollaei H; Halabian R; Poormoghadam D; Saffari M; Entezari M; Salimi A Int J Biol Macromol; 2021 Mar; 174():562-572. PubMed ID: 33434552 [TBL] [Abstract][Full Text] [Related]
12. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Zhou J; Xu C; Wu G; Cao X; Zhang L; Zhai Z; Zheng Z; Chen X; Wang Y Acta Biomater; 2011 Nov; 7(11):3999-4006. PubMed ID: 21757035 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and characterization of 3D printing biocompatible crocin-loaded chitosan/collagen/hydroxyapatite-based scaffolds for bone tissue engineering applications. Jirofti N; Hashemi M; Moradi A; Kalalinia F Int J Biol Macromol; 2023 Dec; 252():126279. PubMed ID: 37572811 [TBL] [Abstract][Full Text] [Related]
14. Collagen-tussah silk fibroin hybrid scaffolds loaded with bone mesenchymal stem cells promote skin wound repair in rats. Cui B; Zhang C; Gan B; Liu W; Liang J; Fan Z; Wen Y; Yang Y; Peng X; Zhou Y Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110611. PubMed ID: 32228999 [TBL] [Abstract][Full Text] [Related]
15. Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements. Thibault RA; Scott Baggett L; Mikos AG; Kasper FK Tissue Eng Part A; 2010 Feb; 16(2):431-40. PubMed ID: 19863274 [TBL] [Abstract][Full Text] [Related]
17. Hydroxyapatite/collagen coating on PLGA electrospun fibers for osteogenic differentiation of bone marrow mesenchymal stem cells. Yang X; Li Y; He W; Huang Q; Zhang R; Feng Q J Biomed Mater Res A; 2018 Nov; 106(11):2863-2870. PubMed ID: 30289593 [TBL] [Abstract][Full Text] [Related]
18. Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells is enhanced by an aragonite scaffold. Matta C; Szűcs-Somogyi C; Kon E; Robinson D; Neufeld T; Altschuler N; Berta A; Hangody L; Veréb Z; Zákány R Differentiation; 2019; 107():24-34. PubMed ID: 31152959 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional silk fibroin scaffolds enhance the bone formation and angiogenic differentiation of human amniotic mesenchymal stem cells: a biocompatibility analysis. Li Y; Liu Z; Tang Y; Fan Q; Feng W; Luo C; Dai G; Ge Z; Zhang J; Zou G; Liu Y; Hu N; Huang W Acta Biochim Biophys Sin (Shanghai); 2020 Jun; 52(6):590-602. PubMed ID: 32393968 [TBL] [Abstract][Full Text] [Related]
20. Bone progenitors produced by direct osteogenic differentiation of the unprocessed bone marrow demonstrate high osteogenic potential in vitro and in vivo. Ginis I; Weinreb M; Abramov N; Shinar D; Merchav S; Schwartz A; Shirvan M Biores Open Access; 2012 Apr; 1(2):69-78. PubMed ID: 23514783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]