These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 34727106)

  • 1. Network-based protein-protein interaction prediction method maps perturbations of cancer interactome.
    Qiu J; Chen K; Zhong C; Zhu S; Ma X
    PLoS Genet; 2021 Nov; 17(11):e1009869. PubMed ID: 34727106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical graph learning for protein-protein interaction.
    Gao Z; Jiang C; Zhang J; Jiang X; Li L; Zhao P; Yang H; Huang Y; Li J
    Nat Commun; 2023 Feb; 14(1):1093. PubMed ID: 36841846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network.
    Xiao Z; Deng Y
    PLoS One; 2020; 15(9):e0238915. PubMed ID: 32970681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving protein-protein interaction prediction using protein language model and protein network features.
    Hu J; Li Z; Rao B; Thafar MA; Arif M
    Anal Biochem; 2024 Oct; 693():115550. PubMed ID: 38679191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A feature extraction free approach for protein interactome inference from co-elution data.
    Chen YH; Chao KH; Wong JY; Liu CF; Leu JY; Tsai HK
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37328692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-Based Analysis Reveals Cancer Missense Mutations Target Protein Interaction Interfaces.
    Engin HB; Kreisberg JF; Carter H
    PLoS One; 2016; 11(4):e0152929. PubMed ID: 27043210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of multiple biological features yields high confidence human protein interactome.
    Karagoz K; Sevimoglu T; Arga KY
    J Theor Biol; 2016 Aug; 403():85-96. PubMed ID: 27196966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MEG-PPIS: a fast protein-protein interaction site prediction method based on multi-scale graph information and equivariant graph neural network.
    Ding H; Li X; Han P; Tian X; Jing F; Wang S; Song T; Fu H; Kang N
    Bioinformatics; 2024 Jan; 40(5):. PubMed ID: 38640481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SPRINT: ultrafast protein-protein interaction prediction of the entire human interactome.
    Li Y; Ilie L
    BMC Bioinformatics; 2017 Nov; 18(1):485. PubMed ID: 29141584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Intrinsic Geometric Structure of Protein-Protein Interaction Networks for Protein Interaction Prediction.
    Fang Y; Sun M; Dai G; Ramain K
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(1):76-85. PubMed ID: 26886733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A homologous mapping method for three-dimensional reconstruction of protein networks reveals disease-associated mutations.
    Huang SH; Lo YS; Luo YC; Tseng YY; Yang JM
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):13. PubMed ID: 29560828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the interactome of Xanthomonas oryzae pathovar oryzae for target selection and DB service.
    Kim JG; Park D; Kim BC; Cho SW; Kim YT; Park YJ; Cho HJ; Park H; Kim KB; Yoon KO; Park SJ; Lee BM; Bhak J
    BMC Bioinformatics; 2008 Jan; 9():41. PubMed ID: 18215330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Completing sparse and disconnected protein-protein network by deep learning.
    Huang L; Liao L; Wu CH
    BMC Bioinformatics; 2018 Mar; 19(1):103. PubMed ID: 29566671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. D'or: deep orienter of protein-protein interaction networks.
    Pirak D; Sharan R
    Bioinformatics; 2024 Jul; 40(7):. PubMed ID: 38862241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pitfalls of machine learning models for protein-protein interaction networks.
    Lannelongue L; Inouye M
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38200587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normalized L3-based link prediction in protein-protein interaction networks.
    Yuen HY; Jansson J
    BMC Bioinformatics; 2023 Feb; 24(1):59. PubMed ID: 36814208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing genome-wide protein-protein interaction networks using multiple strategies with homologous mapping.
    Lo YS; Huang SH; Luo YC; Lin CY; Yang JM
    PLoS One; 2015; 10(1):e0116347. PubMed ID: 25602759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using an in situ proximity ligation assay to systematically profile endogenous protein-protein interactions in a pathway network.
    Chen TC; Lin KT; Chen CH; Lee SA; Lee PY; Liu YW; Kuo YL; Wang FS; Lai JM; Huang CY
    J Proteome Res; 2014 Dec; 13(12):5339-46. PubMed ID: 25241761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.