These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 34727821)

  • 1. Investigation on the interaction between Ag
    Chi Z; Weng L; Zhang X
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2021; 56(13):1367-1372. PubMed ID: 34727821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the interaction between colloidal TiO(2) and bovine hemoglobin using spectral methods.
    Wang YQ; Zhang HM; Wang RH
    Colloids Surf B Biointerfaces; 2008 Sep; 65(2):190-6. PubMed ID: 18502104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The study on interactions between levofloxacin and model proteins by using multi-spectroscopic and molecular docking methods.
    Fang Q; Guo C; Wang Y; Liu Y
    J Biomol Struct Dyn; 2018 Jun; 36(8):2032-2044. PubMed ID: 28604271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic investigation on the toxic interactions of Ni2+ with bovine hemoglobin.
    Wang L; Liu R; Chi Z; Yang B; Zhang P; Wang M
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Jul; 76(2):155-60. PubMed ID: 20400367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of the veterinary drug tetracycline to bovine hemoglobin and toxicological implications.
    Chi Z; Liu R; You H; Wang D
    J Environ Sci Health B; 2014; 49(12):978-84. PubMed ID: 25310814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of local anesthetic drug procaine hydrochloride on the conformational stability of bovine hemoglobin: Multi-spectroscopic and computational approaches.
    Kaushal D; Lal H; Ansari SS; Naqvi S
    J Biomol Struct Dyn; 2022; 40(19):8938-8948. PubMed ID: 33970817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the binding behavior of prodigiosin with bovine hemoglobin by multi-spectroscopic techniques.
    Tang J; Yang C; Zhou L; Ma F; Liu S; Wei S; Zhou J; Zhou Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():461-7. PubMed ID: 22728237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of bisphenol A with bovine hemoglobin using spectroscopic and molecular modeling methods.
    Fang X; Cao S; Liu R
    Appl Spectrosc; 2011 Nov; 65(11):1250-3. PubMed ID: 22054083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of the interaction between paraquat and bovine hemoglobin.
    Wang YQ; Zhang HM; Zhang GC; Liu SX; Zhou QH; Fei ZH; Liu ZT
    Int J Biol Macromol; 2007 Aug; 41(3):243-50. PubMed ID: 17403534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the interaction between levamlodipine and hemoglobin based on spectroscopic and molecular docking methods.
    Xu L; Liu Z; Liao T; Tuo X
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Dec; 223():117306. PubMed ID: 31255862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic investigation on the toxicological interactions of 4-aminoantipyrine with bovine hemoglobin.
    Teng Y; Liu R; Yan S; Pan X; Zhang P; Wang M
    J Fluoresc; 2010 Jan; 20(1):381-7. PubMed ID: 19787443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxic interaction mechanism between oxytetracycline and bovine hemoglobin.
    Chi Z; Liu R; Yang B; Zhang H
    J Hazard Mater; 2010 Aug; 180(1-3):741-7. PubMed ID: 20494513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison and investigation of bovine hemoglobin binding to dihydroartemisinin and 9-hydroxy-dihydroartemisinin: spectroscopic characterization.
    Xiao M; Han L; Zhou L; Zhou Y; Huang X; Ge X; Wei S; Zhou J; Wu H; Shen J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():120-5. PubMed ID: 24531541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biophysical probe on the binding of 2-mercaptothioazoline to bovine hemoglobin.
    Zou L; Zhang X; Shao M; Sun R; Zhu Y; Zou B; Huang Z; Liu H; Teng Y
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):208-214. PubMed ID: 30387064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic and molecular modeling studies on the interactions of fluoranthene with bovine hemoglobin.
    Cao XY; Wang S; Tian SQ; Lou H; Kong YC; Yang ZJ; Liu JL
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():301-307. PubMed ID: 29879645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation on the interaction of the toxicant, gentian violet, with bovine hemoglobin.
    Liu Y; Lin J; Chen M; Song L
    Food Chem Toxicol; 2013 Aug; 58():264-72. PubMed ID: 23643798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the structure and conformation of bovine hemoglobin in presence of the drug hydroxyurea: multi-spectroscopic studies supported by docking and molecular dynamics simulation.
    Saha S; Chowdhury J
    J Biomol Struct Dyn; 2021 Jul; 39(10):3533-3547. PubMed ID: 32397828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and computational characterization on the binding of two fluoroquinolones to bovine hemoglobin.
    Qin P; Pan X; Liu R; Qiu J; Fang X
    J Mol Recognit; 2017 Dec; 30(12):. PubMed ID: 28608588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification differential behavior of Gd@C
    Liu X; Ying X; Li Y; Yang H; Hao W; Yu M
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():383-396. PubMed ID: 29894950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the interaction of caffeine with bovine hemoglobin.
    Wang YQ; Zhang HM; Zhou QH
    Eur J Med Chem; 2009 May; 44(5):2100-5. PubMed ID: 19022538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.