These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34728323)

  • 1. Severe cyanobacteria accumulation potentially induces methylotrophic methane producing pathway in eutrophic lakes.
    Zhou C; Peng Y; Yu M; Deng Y; Chen L; Zhang L; Xu X; Zhang S; Yan Y; Wang G
    Environ Pollut; 2022 Jan; 292(Pt B):118443. PubMed ID: 34728323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyanobacteria blooms: A neglected facilitator of CH
    Yan X; Xu X; Ji M; Zhang Z; Wang M; Wu S; Wang G; Zhang C; Liu H
    Sci Total Environ; 2019 Feb; 651(Pt 1):466-474. PubMed ID: 30243166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eutrophic levels and algae growth increase emissions of methane and volatile sulfur compounds from lakes.
    Wang J; Wei ZP; Chu YX; Tian G; He R
    Environ Pollut; 2022 Aug; 306():119435. PubMed ID: 35550131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing sulfate concentration and sedimentary decaying cyanobacteria co-affect organic carbon mineralization in eutrophic lake sediments.
    Zhou C; Peng Y; Deng Y; Yu M; Chen L; Zhang L; Xu X; Zhao F; Yan Y; Wang G
    Sci Total Environ; 2022 Feb; 806(Pt 3):151260. PubMed ID: 34715224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Space-for-time substitution leads to carbon emission overestimation in eutrophic lakes.
    Zhou M; Zhou C; Peng Y; Jia R; Zhao W; Liang S; Xu X; Terada A; Wang G
    Environ Res; 2023 Feb; 219():115175. PubMed ID: 36584848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear response of methane release to increased trophic state levels coupled with microbial processes in shallow lakes.
    Zhou Y; Song K; Han R; Riya S; Xu X; Yeerken S; Geng S; Ma Y; Terada A
    Environ Pollut; 2020 Oct; 265(Pt B):114919. PubMed ID: 32540596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of cyanobacterial biomass and nitrate nitrogen on methanogens in eutrophic lakes.
    Zhu Y; Chen X; Yang Y; Xie S
    Sci Total Environ; 2022 Nov; 848():157570. PubMed ID: 35905968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of phytoplankton blooms on fluxes and emissions of greenhouse gases in a eutrophic lake.
    Bartosiewicz M; Maranger R; Przytulska A; Laurion I
    Water Res; 2021 May; 196():116985. PubMed ID: 33735621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CS
    Wang J; Chu YX; Schäfer H; Tian G; He R
    Environ Res; 2022 May; 208():112678. PubMed ID: 34999031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of alternative electron acceptors on the activity and community structure of methane-producing and consuming microbes in the sediments of two shallow boreal lakes.
    Rissanen AJ; Karvinen A; Nykänen H; Peura S; Tiirola M; Mäki A; Kankaala P
    FEMS Microbiol Ecol; 2017 Jul; 93(7):. PubMed ID: 28637304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [CH
    Shang DY; Xiao QT; Hu ZH; Xie YH; Huang WJ; Zhang M
    Huan Jing Ke Xue; 2018 Nov; 39(11):5227-5236. PubMed ID: 30628248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filamentous green algae Spirogyra regulates methane emissions from eutrophic rivers.
    Mei D; Ni M; Liang X; Hou L; Wang F; He C
    Environ Sci Pollut Res Int; 2021 Jan; 28(3):3660-3671. PubMed ID: 32929674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The significant contribution of lake depth in regulating global lake diffusive methane emissions.
    Li M; Peng C; Zhu Q; Zhou X; Yang G; Song X; Zhang K
    Water Res; 2020 Apr; 172():115465. PubMed ID: 31972411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments.
    Martinez-Cruz K; Leewis MC; Herriott IC; Sepulveda-Jauregui A; Anthony KW; Thalasso F; Leigh MB
    Sci Total Environ; 2017 Dec; 607-608():23-31. PubMed ID: 28686892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eutrophication decreased CO
    Sun H; Lu X; Yu R; Yang J; Liu X; Cao Z; Zhang Z; Li M; Geng Y
    Water Res; 2021 Aug; 201():117363. PubMed ID: 34174729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions.
    Rasilo T; Prairie YT; Del Giorgio PA
    Glob Chang Biol; 2015 Mar; 21(3):1124-39. PubMed ID: 25220765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnitude and Drivers of Oxic Methane Production in Small Temperate Lakes.
    Thottathil SD; Reis PCJ; Prairie YT
    Environ Sci Technol; 2022 Aug; 56(15):11041-11050. PubMed ID: 35820110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane sources in arctic thermokarst lake sediments on the North Slope of Alaska.
    Matheus Carnevali PB; Rohrssen M; Williams MR; Michaud AB; Adams H; Berisford D; Love GD; Priscu JC; Rassuchine O; Hand KP; Murray AE
    Geobiology; 2015 Mar; 13(2):181-97. PubMed ID: 25612141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanobacteria blooms potentially enhance volatile organic compound (VOC) emissions from a eutrophic lake: Field and experimental evidence.
    Liu M; Wu T; Zhao X; Zan F; Yang G; Miao Y
    Environ Res; 2021 Nov; 202():111664. PubMed ID: 34256073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse sediment microbiota shape methane emission temperature sensitivity in Arctic lakes.
    Emerson JB; Varner RK; Wik M; Parks DH; Neumann RB; Johnson JE; Singleton CM; Woodcroft BJ; Tollerson R; Owusu-Dommey A; Binder M; Freitas NL; Crill PM; Saleska SR; Tyson GW; Rich VI
    Nat Commun; 2021 Oct; 12(1):5815. PubMed ID: 34611153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.