These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34728406)

  • 1. Potential distribution of invasive crop pests under climate change: incorporating mitigation responses of insects into prediction models.
    Ma G; Ma CS
    Curr Opin Insect Sci; 2022 Feb; 49():15-21. PubMed ID: 34728406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forest microclimates and climate change: Importance, drivers and future research agenda.
    De Frenne P; Lenoir J; Luoto M; Scheffers BR; Zellweger F; Aalto J; Ashcroft MB; Christiansen DM; Decocq G; De Pauw K; Govaert S; Greiser C; Gril E; Hampe A; Jucker T; Klinges DH; Koelemeijer IA; Lembrechts JJ; Marrec R; Meeussen C; Ogée J; Tyystjärvi V; Vangansbeke P; Hylander K
    Glob Chang Biol; 2021 Jun; 27(11):2279-2297. PubMed ID: 33725415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. There is plenty of room at the bottom: microclimates drive insect vulnerability to climate change.
    Pincebourde S; Woods HA
    Curr Opin Insect Sci; 2020 Oct; 41():63-70. PubMed ID: 32777713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot and bothered: The role of behaviour and microclimates in buffering species from rising temperatures.
    Senior RA
    J Anim Ecol; 2020 Nov; 89(11):2392-2396. PubMed ID: 33460111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cool microrefugia accumulate and conserve biodiversity under climate change.
    Nadeau CP; Giacomazzo A; Urban MC
    Glob Chang Biol; 2022 May; 28(10):3222-3235. PubMed ID: 35226784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic models for predicting insect responses to climate change.
    Maino JL; Kong JD; Hoffmann AA; Barton MG; Kearney MR
    Curr Opin Insect Sci; 2016 Oct; 17():81-86. PubMed ID: 27720078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming tropical Andes.
    Crespo-Pérez V; Régnière J; Chuine I; Rebaudo F; Dangles O
    Glob Chang Biol; 2015 Jan; 21(1):82-96. PubMed ID: 24920187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geographic dispersion of invasive crop pests: the role of basal, plastic climate stress tolerance and other complementary traits in the tropics.
    Nyamukondiwa C; Machekano H; Chidawanyika F; Mutamiswa R; Ma G; Ma CS
    Curr Opin Insect Sci; 2022 Apr; 50():100878. PubMed ID: 35093582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating pests and pathogens into the climate change/food security debate.
    Gregory PJ; Johnson SN; Newton AC; Ingram JS
    J Exp Bot; 2009; 60(10):2827-38. PubMed ID: 19380424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of climate change on invasive crop pests across biomes.
    Schneider L; Rebetez M; Rasmann S
    Curr Opin Insect Sci; 2022 Apr; 50():100895. PubMed ID: 35240333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential distribution of two invasive pineapple pests under climate change.
    Wei J; Peng L; He Z; Lu Y; Wang F
    Pest Manag Sci; 2020 May; 76(5):1652-1663. PubMed ID: 31724310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-Scale Microclimatic Variation Can Shape the Responses of Organisms to Global Change in Both Natural and Urban Environments.
    Pincebourde S; Murdock CC; Vickers M; Sears MW
    Integr Comp Biol; 2016 Jul; 56(1):45-61. PubMed ID: 27107292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Species traits elucidate crop pest response to landscape composition: a global analysis.
    Tamburini G; Santoiemma G; E O'Rourke M; Bommarco R; Chaplin-Kramer R; Dainese M; Karp DS; Kim TN; Martin EA; Petersen M; Marini L
    Proc Biol Sci; 2020 Oct; 287(1937):20202116. PubMed ID: 33109015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of biologically relevant microclimates in habitat suitability assessments.
    Varner J; Dearing MD
    PLoS One; 2014; 9(8):e104648. PubMed ID: 25115894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Range expansion through fragmented landscapes under a variable climate.
    Bennie J; Hodgson JA; Lawson CR; Holloway CT; Roy DB; Brereton T; Thomas CD; Wilson RJ
    Ecol Lett; 2013 Jul; 16(7):921-9. PubMed ID: 23701124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate change and biological invasions: evidence, expectations, and response options.
    Hulme PE
    Biol Rev Camb Philos Soc; 2017 Aug; 92(3):1297-1313. PubMed ID: 27241717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cropland Microclimate And Leaf-Nesting Behavior Shape The Growth of Caterpillar Under Future Warming.
    Wang L; Xing S; Chang X; Ma L; Wenda C
    Integr Comp Biol; 2024 May; ():. PubMed ID: 38755000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Into the wild-a field study on the evolutionary and ecological importance of thermal plasticity in ectotherms across temperate and tropical regions.
    Noer NK; Ørsted M; Schiffer M; Hoffmann AA; Bahrndorff S; Kristensen TN
    Philos Trans R Soc Lond B Biol Sci; 2022 Mar; 377(1846):20210004. PubMed ID: 35067088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-sensitive development shapes insect phenological responses to climate change.
    Buckley LB
    Curr Opin Insect Sci; 2022 Aug; 52():100897. PubMed ID: 35257968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. When insect pests build their own thermal niche: The hot nest of the pine processionary moth.
    Poitou L; Robinet C; Suppo C; Rousselet J; Laparie M; Pincebourde S
    J Therm Biol; 2021 May; 98():102947. PubMed ID: 34016364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.