BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34729318)

  • 21. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall.
    Pal T; Malhotra N; Chanumolu SK; Chauhan RS
    Planta; 2015 Jul; 242(1):239-58. PubMed ID: 25904478
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structurally diverse diterpenoid alkaloids from the lateral roots of
    Yu Y; Wu S; Zhang J; Li J; Yao C; Wu W; Wang Y; Ji H; Wei W; Gao M; Li Y; Yao S; Huang Y; Bi Q; Qu H; Guo DA
    RSC Adv; 2021 Aug; 11(43):26594-26606. PubMed ID: 35480028
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Potential Biomarkers from Aconitum carmichaelii, a Traditional Chinese Medicine, Using a Metabolomic Approach.
    Zhao D; Shi Y; Zhu X; Liu L; Ji P; Long C; Shen Y; Kennelly EJ
    Planta Med; 2018 Apr; 84(6-07):434-441. PubMed ID: 29076119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional characterization of ent-copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the Salvia miltiorrhiza gibberellin biosynthetic pathway.
    Su P; Tong Y; Cheng Q; Hu Y; Zhang M; Yang J; Teng Z; Gao W; Huang L
    Sci Rep; 2016 Mar; 6():23057. PubMed ID: 26971881
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare.
    Zerbe P; Chiang A; Dullat H; O'Neil-Johnson M; Starks C; Hamberger B; Bohlmann J
    Plant J; 2014 Sep; 79(6):914-27. PubMed ID: 24990389
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aconicarmisulfonine A, a Sulfonated C
    Guo Q; Xia H; Shi G; Zhang T; Shi J
    Org Lett; 2018 Feb; 20(3):816-819. PubMed ID: 29328664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The terpene synthase gene family in Tripterygium wilfordii harbors a labdane-type diterpene synthase among the monoterpene synthase TPS-b subfamily.
    Hansen NL; Heskes AM; Hamberger B; Olsen CE; Hallström BM; Andersen-Ranberg J; Hamberger B
    Plant J; 2017 Feb; 89(3):429-441. PubMed ID: 27801964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative transcriptome revealed the molecular responses of Aconitum carmichaelii Debx. to downy mildew at different stages of disease development.
    Chen L; Hu Y; Huang L; Chen L; Duan X; Wang G; Ou H
    BMC Plant Biol; 2024 Apr; 24(1):332. PubMed ID: 38664645
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional Diversification of Kaurene Synthase-Like Genes in
    Jin B; Cui G; Guo J; Tang J; Duan L; Lin H; Shen Y; Chen T; Zhang H; Huang L
    Plant Physiol; 2017 Jun; 174(2):943-955. PubMed ID: 28381502
    [No Abstract]   [Full Text] [Related]  

  • 30. Biosynthesis of the oxygenated diterpene nezukol in the medicinal plant Isodon rubescens is catalyzed by a pair of diterpene synthases.
    Pelot KA; Hagelthorn LM; Addison JB; Zerbe P
    PLoS One; 2017; 12(4):e0176507. PubMed ID: 28445526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Effects of Rheum palmatum L. on the Pharmacokinetic of Major Diterpene Alkaloids of Aconitum carmichaelii Debx. in Rats.
    Li Y; Li YX; Zhao MJ; Yuan A; Gong XH; Zhao MJ; Peng C
    Eur J Drug Metab Pharmacokinet; 2017 Jun; 42(3):441-451. PubMed ID: 27357588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pharmacokinetics and tissue distribution of eighteen major alkaloids of Aconitum carmichaelii in rats by UHPLC-QQQ-MS.
    Zhang Y; Zong X; Wu JL; Liu Y; Liu Z; Zhou H; Liu L; Li N
    J Pharm Biomed Anal; 2020 Jun; 185():113226. PubMed ID: 32163851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Origin and early evolution of the plant terpene synthase family.
    Jia Q; Brown R; Köllner TG; Fu J; Chen X; Wong GK; Gershenzon J; Peters RJ; Chen F
    Proc Natl Acad Sci U S A; 2022 Apr; 119(15):e2100361119. PubMed ID: 35394876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes.
    Garg A; Agrawal L; Misra RC; Sharma S; Ghosh S
    BMC Genomics; 2015 Sep; 16(1):659. PubMed ID: 26328761
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One amino acid makes the difference: the formation of ent-kaurene and 16α-hydroxy-ent-kaurane by diterpene synthases in poplar.
    Irmisch S; Müller AT; Schmidt L; Günther J; Gershenzon J; Köllner TG
    BMC Plant Biol; 2015 Oct; 15():262. PubMed ID: 26511849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fifteen new diterpenoid alkaloids from the roots of Aconitum kirinense Nakai.
    Jiang GY; Qin LL; Gao F; Huang S; Zhou XL
    Fitoterapia; 2020 Mar; 141():104477. PubMed ID: 31927015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antiviral activity of aconite alkaloids from
    Xu W; Zhang M; Liu H; Wei K; He M; Li X; Hu D; Yang S; Zheng Y
    Nat Prod Res; 2019 May; 33(10):1486-1490. PubMed ID: 29271255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Oxygenated Fatty Acid as a Side Chain of Lipo-Alkaloids in Aconitum carmichaelii by UHPLC-Q-TOF-MS and a Database.
    Liang Y; Wu JL; Leung EL; Zhou H; Liu Z; Yan G; Liu Y; Liu L; Li N
    Molecules; 2016 Mar; 21(4):437. PubMed ID: 27043515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distribution of toxic alkaloids in tissues from three herbal medicine Aconitum species using laser micro-dissection, UHPLC-QTOF MS and LC-MS/MS techniques.
    Jaiswal Y; Liang Z; Ho A; Wong L; Yong P; Chen H; Zhao Z
    Phytochemistry; 2014 Nov; 107():155-74. PubMed ID: 25172517
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Qualitative and quantitative analysis of aconitine-type and lipo-alkaloids of Aconitum carmichaelii roots.
    Csupor D; Wenzig EM; Zupkó I; Wölkart K; Hohmann J; Bauer R
    J Chromatogr A; 2009 Mar; 1216(11):2079-86. PubMed ID: 19019379
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.