These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 34729375)
1. CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Demirci S; Leonard A; Essawi K; Tisdale JF Mol Ther Methods Clin Dev; 2021 Dec; 23():276-285. PubMed ID: 34729375 [TBL] [Abstract][Full Text] [Related]
2. Genome editing strategies for fetal hemoglobin induction in beta-hemoglobinopathies. Demirci S; Leonard A; Tisdale JF Hum Mol Genet; 2020 Sep; 29(R1):R100-R106. PubMed ID: 32406490 [TBL] [Abstract][Full Text] [Related]
3. Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Khosravi MA; Abbasalipour M; Concordet JP; Berg JV; Zeinali S; Arashkia A; Azadmanesh K; Buch T; Karimipoor M Eur J Pharmacol; 2019 Jul; 854():398-405. PubMed ID: 31039344 [TBL] [Abstract][Full Text] [Related]
4. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies. Paschoudi K; Yannaki E; Psatha N Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298481 [TBL] [Abstract][Full Text] [Related]
5. A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Traxler EA; Yao Y; Wang YD; Woodard KJ; Kurita R; Nakamura Y; Hughes JR; Hardison RC; Blobel GA; Li C; Weiss MJ Nat Med; 2016 Sep; 22(9):987-90. PubMed ID: 27525524 [TBL] [Abstract][Full Text] [Related]
6. Combined approaches for increasing fetal hemoglobin (HbF) and Finotti A; Gambari R Front Genome Ed; 2023; 5():1204536. PubMed ID: 37529398 [TBL] [Abstract][Full Text] [Related]
7. Using Clustered Regularly Interspaced Short Palindromic Repeats gene editing to induce permanent expression of fetal hemoglobin in β-thalassemia and sickle cell disease: A comparative meta-analysis. Quagliano A; Acevedo D; Hardigan P; Prasad S Front Med (Lausanne); 2022; 9():943631. PubMed ID: 36250099 [TBL] [Abstract][Full Text] [Related]
8. Induction of fetal hemoglobin synthesis by CRISPR/Cas9-mediated editing of the human β-globin locus. Antoniani C; Meneghini V; Lattanzi A; Felix T; Romano O; Magrin E; Weber L; Pavani G; El Hoss S; Kurita R; Nakamura Y; Cradick TJ; Lundberg AS; Porteus M; Amendola M; El Nemer W; Cavazzana M; Mavilio F; Miccio A Blood; 2018 Apr; 131(17):1960-1973. PubMed ID: 29519807 [TBL] [Abstract][Full Text] [Related]
9. Editing the core region in HPFH deletions alters fetal and adult globin expression for treatment of β-hemoglobinopathies. Venkatesan V; Christopher AC; Rhiel M; Azhagiri MKK; Babu P; Walavalkar K; Saravanan B; Andrieux G; Rangaraj S; Srinivasan S; Karuppusamy KV; Jacob A; Bagchi A; Pai AA; Nakamura Y; Kurita R; Balasubramanian P; Pai R; Marepally SK; Mohankumar KM; Velayudhan SR; Boerries M; Notani D; Cathomen T; Srivastava A; Thangavel S Mol Ther Nucleic Acids; 2023 Jun; 32():671-688. PubMed ID: 37215154 [TBL] [Abstract][Full Text] [Related]
10. Clinical genome editing to treat sickle cell disease-A brief update. Zarghamian P; Klermund J; Cathomen T Front Med (Lausanne); 2022; 9():1065377. PubMed ID: 36698803 [TBL] [Abstract][Full Text] [Related]
11. Genome editing approaches to β-hemoglobinopathies. Brusson M; Miccio A Prog Mol Biol Transl Sci; 2021; 182():153-183. PubMed ID: 34175041 [TBL] [Abstract][Full Text] [Related]
13. Induction of Fetal Hemoglobin by Introducing Natural Hereditary Persistence of Fetal Hemoglobin Mutations in the γ-Globin Gene Promoters for Genome Editing Therapies for β-Thalassemia. Lu D; Xu Z; Peng Z; Yang Y; Song B; Xiong Z; Ma Z; Guan H; Chen B; Nakamura Y; Zeng J; Liu N; Sun X; Chen D Front Genet; 2022; 13():881937. PubMed ID: 35656314 [TBL] [Abstract][Full Text] [Related]