These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 34729375)

  • 41. Fetal hemoglobin regulating genetic variants identified in homozygous (HbSS) and heterozygous (HbSA) subjects from South Mexico.
    Rizo-de la Torre LC; Borrayo-López FJ; Perea-Díaz FJ; Aquino E; Venegas M; Hernández-Carbajal C; Espinoza-Mata LL; Ibarra-Cortés B
    J Trop Pediatr; 2022 Aug; 68(5):. PubMed ID: 36130307
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Emerging Genetic Therapy for Sickle Cell Disease.
    Orkin SH; Bauer DE
    Annu Rev Med; 2019 Jan; 70():257-271. PubMed ID: 30355263
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Therapeutic gene editing strategies using CRISPR-Cas9 for the β-hemoglobinopathies.
    Papizan JB; Porter SN; Sharma A; Pruett-Miller SM
    J Biomed Res; 2020 Nov; 35(2):115-134. PubMed ID: 33349624
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression analysis data of BCL11A and γ-globin genes in KU812 and KG-1 cell lines after CRISPR/Cas9-mediated BCL11A enhancer deletion.
    Khosravi MA; Abbasalipour M; Concordet JP; Berg JV; Zeinali S; Arashkia A; Buch T; Karimipoor M
    Data Brief; 2020 Feb; 28():104974. PubMed ID: 31890812
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A natural regulatory mutation in the proximal promoter elevates fetal
    Martyn GE; Wienert B; Kurita R; Nakamura Y; Quinlan KGR; Crossley M
    Blood; 2019 Feb; 133(8):852-856. PubMed ID: 30617196
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative analysis of erythrocytes containing fetal hemoglobin (F cells) in children with sickle cell disease.
    Marcus SJ; Kinney TR; Schultz WH; O'Branski EE; Ware RE
    Am J Hematol; 1997 Jan; 54(1):40-6. PubMed ID: 8980259
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease.
    Lettre G; Sankaran VG; Bezerra MA; Araújo AS; Uda M; Sanna S; Cao A; Schlessinger D; Costa FF; Hirschhorn JN; Orkin SH
    Proc Natl Acad Sci U S A; 2008 Aug; 105(33):11869-74. PubMed ID: 18667698
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fetal haemoglobin levels and haematological characteristics of compound heterozygotes for haemoglobin S and deletional hereditary persistence of fetal haemoglobin.
    Ngo DA; Aygun B; Akinsheye I; Hankins JS; Bhan I; Luo HY; Steinberg MH; Chui DH
    Br J Haematol; 2012 Jan; 156(2):259-64. PubMed ID: 22017641
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Revolutionary breakthrough: FDA approves CASGEVY, the first CRISPR/Cas9 gene therapy for sickle cell disease.
    Singh A; Irfan H; Fatima E; Nazir Z; Verma A; Akilimali A
    Ann Med Surg (Lond); 2024 Aug; 86(8):4555-4559. PubMed ID: 39118728
    [TBL] [Abstract][Full Text] [Related]  

  • 50. β-Hemoglobinopathies: The Test Bench for Genome Editing-Based Therapeutic Strategies.
    Barbarani G; Łabedz A; Ronchi AE
    Front Genome Ed; 2020; 2():571239. PubMed ID: 34713219
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combination of lentiviral and genome editing technologies for the treatment of sickle cell disease.
    Ramadier S; Chalumeau A; Felix T; Othman N; Aknoun S; Casini A; Maule G; Masson C; De Cian A; Frati G; Brusson M; Concordet JP; Cavazzana M; Cereseto A; El Nemer W; Amendola M; Wattellier B; Meneghini V; Miccio A
    Mol Ther; 2022 Jan; 30(1):145-163. PubMed ID: 34418541
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Small Key for a Heavy Door: Genetic Therapies for the Treatment of Hemoglobinopathies.
    Zittersteijn HA; Harteveld CL; Klaver-Flores S; Lankester AC; Hoeben RC; Staal FJT; Gonçalves MAFV
    Front Genome Ed; 2020; 2():617780. PubMed ID: 34713239
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acyclovir induces fetal hemoglobin via downregulation of γ-globin repressors, BCL11A and SOX6 trans-acting factors.
    Ali H; Khan F; Ghulam Musharraf S
    Biochem Pharmacol; 2021 Aug; 190():114612. PubMed ID: 34010599
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Rare Case of Multiple Bone Infarctions and Abnormal Pulmonary Function Tests in a Patient With Compound Heterozygous Hemoglobin S and Type 2 Hereditary Persistence of Fetal Hemoglobin.
    Alnaqbi KA
    Cureus; 2024 Aug; 16(8):e66395. PubMed ID: 39113817
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Wake-up Sleepy Gene: Reactivating Fetal Globin for β-Hemoglobinopathies.
    Wienert B; Martyn GE; Funnell APW; Quinlan KGR; Crossley M
    Trends Genet; 2018 Dec; 34(12):927-940. PubMed ID: 30287096
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CRISPR/Cas9 Ablated BCL11A Unveils the Genes with Possible Role of Globin Switching.
    Movahedi Motlagh F; Soleimanpour-Lichaei HR; Shamsara M; Etemadzadeh A; Modarressi MH
    Adv Pharm Bull; 2023 Nov; 13(4):799-805. PubMed ID: 38022811
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hereditary persistence of hemoglobin F is protective against red cell sickling. A case report and brief review.
    Sokolova A; Mararenko A; Rozin A; Podrumar A; Gotlieb V
    Hematol Oncol Stem Cell Ther; 2019 Dec; 12(4):215-219. PubMed ID: 29079125
    [TBL] [Abstract][Full Text] [Related]  

  • 58. miR-365-3p mediates BCL11A and SOX6 erythroid-specific coregulation: A new player in HbF activation.
    Simbula M; Manchinu MF; Mingoia M; Pala M; Asunis I; Caria CA; Perseu L; Shah M; Crossley M; Moi P; Ristaldi MS
    Mol Ther Nucleic Acids; 2023 Dec; 34():102025. PubMed ID: 37744176
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Variation in fetal hemoglobin parameters and predicted hemoglobin S polymerization in sickle cell children in the first two years of life: Parisian Prospective Study on Sickle Cell Disease.
    Maier-Redelsperger M; Noguchi CT; de Montalembert M; Rodgers GP; Schechter AN; Gourbil A; Blanchard D; Jais JP; Ducrocq R; Peltier JY
    Blood; 1994 Nov; 84(9):3182-8. PubMed ID: 7524767
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Original Research: Generation of non-deletional hereditary persistence of fetal hemoglobin β-globin locus yeast artificial chromosome transgenic mouse models: -175 Black HPFH and -195 Brazilian HPFH.
    Braghini CA; Costa FC; Fedosyuk H; Neades RY; Novikova LV; Parker MP; Winefield RD; Peterson KR
    Exp Biol Med (Maywood); 2016 Apr; 241(7):697-705. PubMed ID: 26946532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.