These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 34729405)
21. In Situ Growth of a High-Performance All-Solid-State Electrode for Flexible Supercapacitors Based on a PANI/CNT/EVA Composite. Guan X; Kong D; Huang Q; Cao L; Zhang P; Lin H; Lin Z; Yuan H Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960162 [TBL] [Abstract][Full Text] [Related]
22. Pushing the Electrochemical Performance Limits of Polypyrrole Toward Stable Microelectronic Devices. Tahir M; He L; Li L; Cao Y; Yu X; Lu Z; Liao X; Ma Z; Song Y Nanomicro Lett; 2023 Feb; 15(1):49. PubMed ID: 36780011 [TBL] [Abstract][Full Text] [Related]
23. Inkjet printed highly transparent and flexible graphene micro-supercapacitors. Sollami Delekta S; Smith AD; Li J; Östling M Nanoscale; 2017 Jun; 9(21):6998-7005. PubMed ID: 28534907 [TBL] [Abstract][Full Text] [Related]
24. Flexible fiber-shaped supercapacitors based on graphene/polyaniline hybrid fibers with high energy density and capacitance. Wu Y; Meng Z; Yang J; Xue Y Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33831848 [TBL] [Abstract][Full Text] [Related]
25. Printable Fabrication of Nanocoral-Structured Electrodes for High-Performance Flexible and Planar Supercapacitor with Artistic Design. Lin Y; Gao Y; Fan Z Adv Mater; 2017 Nov; 29(43):. PubMed ID: 28980732 [TBL] [Abstract][Full Text] [Related]
26. Flexible self-powered piezo-supercapacitor system for wearable electronics. Gilshteyn EP; Amanbaev D; Silibin MV; Sysa A; Kondrashov VA; Anisimov AS; Kallio T; Nasibulin AG Nanotechnology; 2018 Aug; 29(32):325501. PubMed ID: 29781448 [TBL] [Abstract][Full Text] [Related]
27. Constructing Hierarchical Tectorum-like α-Fe Wang L; Yang H; Liu X; Zeng R; Li M; Huang Y; Hu X Angew Chem Int Ed Engl; 2017 Jan; 56(4):1105-1110. PubMed ID: 28000972 [TBL] [Abstract][Full Text] [Related]
28. Recoverable Wire-Shaped Supercapacitors with Ultrahigh Volumetric Energy Density for Multifunctional Portable and Wearable Electronics. Shi M; Yang C; Song X; Liu J; Zhao L; Zhang P; Gao L ACS Appl Mater Interfaces; 2017 May; 9(20):17051-17059. PubMed ID: 28481083 [TBL] [Abstract][Full Text] [Related]
29. Multitasking MXene Inks Enable High-Performance Printable Microelectrochemical Energy Storage Devices for All-Flexible Self-Powered Integrated Systems. Zheng S; Wang H; Das P; Zhang Y; Cao Y; Ma J; Liu SF; Wu ZS Adv Mater; 2021 Mar; 33(10):e2005449. PubMed ID: 33522037 [TBL] [Abstract][Full Text] [Related]
30. Constructing Ultrahigh-Capacity Zinc-Nickel-Cobalt Oxide@Ni(OH) Zhang Q; Xu W; Sun J; Pan Z; Zhao J; Wang X; Zhang J; Man P; Guo J; Zhou Z; He B; Zhang Z; Li Q; Zhang Y; Xu L; Yao Y Nano Lett; 2017 Dec; 17(12):7552-7560. PubMed ID: 29111747 [TBL] [Abstract][Full Text] [Related]
31. Structural Tuning of a Flexible and Porous Polypyrrole Film by a Template-Assisted Method for Enhanced Capacitance for Supercapacitor Applications. Wang T; Wang Y; Zhang D; Hu X; Zhang L; Zhao C; He YS; Zhang W; Yang N; Ma ZF ACS Appl Mater Interfaces; 2021 Apr; 13(15):17726-17735. PubMed ID: 33821614 [TBL] [Abstract][Full Text] [Related]
32. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors. Sundriyal P; Bhattacharya S ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438 [TBL] [Abstract][Full Text] [Related]
33. Co-Electrodeposited porous PEDOT-CNT microelectrodes for integrated micro-supercapacitors with high energy density, high rate capability, and long cycling life. Tahir M; He L; Haider WA; Yang W; Hong X; Guo Y; Pan X; Tang H; Li Y; Mai L Nanoscale; 2019 Apr; 11(16):7761-7770. PubMed ID: 30951073 [TBL] [Abstract][Full Text] [Related]
34. In Situ Grown Ultrafine RuO Chang Y; Li P; Li L; Chang S; Huo Y; Mu C; Nie A; Xiang J; Xue T; Zhai K; Wang B; Zhao Z; Yu D; Wen F; Liu Z; Tian Y ACS Appl Mater Interfaces; 2021 Oct; 13(40):47560-47571. PubMed ID: 34597012 [TBL] [Abstract][Full Text] [Related]
35. High Density of Free-Standing Holey Graphene/PPy Films for Superior Volumetric Capacitance of Supercapacitors. Fan Z; Zhu J; Sun X; Cheng Z; Liu Y; Wang Y ACS Appl Mater Interfaces; 2017 Jul; 9(26):21763-21772. PubMed ID: 28605894 [TBL] [Abstract][Full Text] [Related]
36. Flexible in-plane microsupercapacitors with electrospun NiFe2O4 nanofibers for portable sensing applications. Li L; Lou Z; Han W; Shen G Nanoscale; 2016 Aug; 8(32):14986-91. PubMed ID: 27466001 [TBL] [Abstract][Full Text] [Related]
37. Bilayered microelectrodes based on electrochemically deposited MnO Haider WA; He L; Mirza HA; Tahir M; Khan AM; Owusu KA; Yang W; Wang Z; Mai L RSC Adv; 2020 May; 10(31):18245-18251. PubMed ID: 35517224 [TBL] [Abstract][Full Text] [Related]
38. Flexible Asymmetrical Solid-State Supercapacitors Based on Laboratory Filter Paper. Zhang L; Zhu P; Zhou F; Zeng W; Su H; Li G; Gao J; Sun R; Wong CP ACS Nano; 2016 Jan; 10(1):1273-82. PubMed ID: 26694704 [TBL] [Abstract][Full Text] [Related]
39. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. Zhao Z; Xia K; Hou Y; Zhang Q; Ye Z; Lu J Chem Soc Rev; 2021 Nov; 50(22):12702-12743. PubMed ID: 34643198 [TBL] [Abstract][Full Text] [Related]