These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 34729411)
1. Probing Kinetics of Water-in-Salt Aqueous Batteries with Thick Porous Electrodes. Lin CH; Wang L; King ST; Bai J; Housel LM; McCarthy AH; Vila MN; Zhu H; Zhao C; Zou L; Ghose S; Xiao X; Lee WK; Takeuchi KJ; Marschilok AC; Takeuchi ES; Ge M; Chen-Wiegart YK ACS Cent Sci; 2021 Oct; 7(10):1676-1687. PubMed ID: 34729411 [TBL] [Abstract][Full Text] [Related]
2. Systems-level investigation of aqueous batteries for understanding the benefit of water-in-salt electrolyte by synchrotron nanoimaging. Lin CH; Sun K; Ge M; Housel LM; McCarthy AH; Vila MN; Zhao C; Xiao X; Lee WK; Takeuchi KJ; Takeuchi ES; Marschilok AC; Chen-Wiegart YK Sci Adv; 2020 Mar; 6(10):eaay7129. PubMed ID: 32181349 [TBL] [Abstract][Full Text] [Related]
3. Electrolyte and Interphase Engineering of Aqueous Batteries Beyond "Water-in-Salt" Strategy. Xie J; Lin D; Lei H; Wu S; Li J; Mai W; Wang P; Hong G; Zhang W Adv Mater; 2024 Apr; 36(17):e2306508. PubMed ID: 37594442 [TBL] [Abstract][Full Text] [Related]
4. Recent Progress in "Water-in-Salt" Electrolytes Toward Non-lithium Based Rechargeable Batteries. Wang Y; Meng X; Sun J; Liu Y; Hou L Front Chem; 2020; 8():595. PubMed ID: 32850632 [TBL] [Abstract][Full Text] [Related]
5. High-Voltage Aqueous Na-Ion Battery Enabled by Inert-Cation-Assisted Water-in-Salt Electrolyte. Jiang L; Liu L; Yue J; Zhang Q; Zhou A; Borodin O; Suo L; Li H; Chen L; Xu K; Hu YS Adv Mater; 2020 Jan; 32(2):e1904427. PubMed ID: 31782981 [TBL] [Abstract][Full Text] [Related]
6. Enhancing Hydrophilicity of Thick Electrodes for High Energy Density Aqueous Batteries. Lee J; Lee H; Bak C; Hong Y; Joung D; Ko JB; Lee YM; Kim C Nanomicro Lett; 2023 Apr; 15(1):97. PubMed ID: 37038025 [TBL] [Abstract][Full Text] [Related]
7. Elucidating the cation hydration ratio in water-in-salt electrolytes for carbon-based supercapacitors. Xiao D; Tang X; Zhang L; Xu Z; Liu Q; Dou H; Zhang X Phys Chem Chem Phys; 2022 Dec; 24(48):29512-29519. PubMed ID: 36448472 [TBL] [Abstract][Full Text] [Related]
8. A Water-in-Salt Electrolyte for Room-Temperature Fluoride-Ion Batteries Based on a Hydrophobic-Hydrophilic Salt. Zou P; Wang C; He Y; Xin HL; Lin R Nano Lett; 2024 May; 24(18):5429-5435. PubMed ID: 38682885 [TBL] [Abstract][Full Text] [Related]
9. Water-in-Salt Gel Biopolymer Electrolytes for Flexible and Wearable Zn/Alkali Metal Dual-Ion Batteries. Kasprzak D; Wu Z; Tao L; Xu J; Zhang Y; Liu J ACS Appl Mater Interfaces; 2024 Jul; 16(28):36304-36314. PubMed ID: 38935891 [TBL] [Abstract][Full Text] [Related]
10. Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes. Zhang X; Hui Z; King S; Wang L; Ju Z; Wu J; Takeuchi KJ; Marschilok AC; West AC; Takeuchi ES; Yu G Nano Lett; 2021 Jul; 21(13):5896-5904. PubMed ID: 34197125 [TBL] [Abstract][Full Text] [Related]
11. Diverse Microstructures and Quasi-Ionic Liquid-like Transport Mechanisms in Concentrated "Water-in-Salt" Lithium Salt Electrolytes: A Molecular Dynamics Study. Sha M; Liu F; Miao M; Meng Q; Luo F; Wei X J Phys Chem Lett; 2024 Aug; 15(34):8736-8742. PubMed ID: 39162359 [TBL] [Abstract][Full Text] [Related]
12. "Water-in-Salt" Electrolytes for Supercapacitors: A Review. Tian X; Zhu Q; Xu B ChemSusChem; 2021 Jun; 14(12):2501-2515. PubMed ID: 33830655 [TBL] [Abstract][Full Text] [Related]
13. Intermolecular Interactions and Electrochemical Studies on Highly Concentrated Acetate-Based Water-in-Salt and Ionic Liquid Electrolytes. Amiri M; Bélanger D J Phys Chem B; 2023 Apr; 127(13):2979-2990. PubMed ID: 36952601 [TBL] [Abstract][Full Text] [Related]
15. An Electric-Field-Reinforced Hydrophobic Cationic Sieve Lowers the Concentration Threshold of Water-In-Salt Electrolytes. Zhou A; Zhang J; Chen M; Yue J; Lv T; Liu B; Zhu X; Qin K; Feng G; Suo L Adv Mater; 2022 Nov; 34(47):e2207040. PubMed ID: 36121604 [TBL] [Abstract][Full Text] [Related]
16. Revealing the Rate-Limiting Li-Ion Diffusion Pathway in Ultrathick Electrodes for Li-Ion Batteries. Gao H; Wu Q; Hu Y; Zheng JP; Amine K; Chen Z J Phys Chem Lett; 2018 Sep; 9(17):5100-5104. PubMed ID: 30130117 [TBL] [Abstract][Full Text] [Related]
17. Nature of the Cathode-Electrolyte Interface in Highly Concentrated Electrolytes Used in Graphite Dual-Ion Batteries. Kotronia A; Asfaw HD; Tai CW; Hahlin M; Brandell D; Edström K ACS Appl Mater Interfaces; 2021 Jan; 13(3):3867-3880. PubMed ID: 33434003 [TBL] [Abstract][Full Text] [Related]
18. Localized Water-In-Salt Electrolyte for Aqueous Lithium-Ion Batteries. Jaumaux P; Yang X; Zhang B; Safaei J; Tang X; Zhou D; Wang C; Wang G Angew Chem Int Ed Engl; 2021 Sep; 60(36):19965-19973. PubMed ID: 34185948 [TBL] [Abstract][Full Text] [Related]
19. Aqueous-Eutectic-in-Salt Electrolytes for High-Energy-Density Supercapacitors with an Operational Temperature Window of 100 °C, from -35 to +65 °C. Lu X; Jiménez-Riobóo RJ; Leech D; Gutiérrez MC; Ferrer ML; Del Monte F ACS Appl Mater Interfaces; 2020 Jul; 12(26):29181-29193. PubMed ID: 32484323 [TBL] [Abstract][Full Text] [Related]