BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34729888)

  • 1. Stable Singlet Carbenes as Organic Superbases.
    Vermersch F; Yazdani S; Junor GP; Grotjahn DB; Jazzar R; Bertrand G
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):27253-27257. PubMed ID: 34729888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong Bases Design: Predicted Limits of Basicity.
    Kulsha AV; Ragoyja EG; Ivashkevich OA
    J Phys Chem A; 2022 Jun; 126(23):3642-3652. PubMed ID: 35657384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1 H-1,2,3-Triazol-5-ylidenes: Readily Available Mesoionic Carbenes.
    Guisado-Barrios G; Soleilhavoup M; Bertrand G
    Acc Chem Res; 2018 Dec; 51(12):3236-3244. PubMed ID: 30417642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact Rotaxane Superbases.
    Power MJ; Morris DTJ; Vitorica-Yrezabal IJ; Leigh DA
    J Am Chem Soc; 2023 Apr; 145(15):8593-9. PubMed ID: 37039157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guanidinophosphazenes: design, synthesis, and basicity in THF and in the gas phase.
    Kolomeitsev AA; Koppel IA; Rodima T; Barten J; Lork E; Röschenthaler GV; Kaljurand I; Kütt A; Koppel I; Mäemets V; Leito I
    J Am Chem Soc; 2005 Dec; 127(50):17656-66. PubMed ID: 16351095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Basicities of Superbasic Phosphonium Ylides and Phosphazenes.
    Saame J; Rodima T; Tshepelevitsh S; Kütt A; Kaljurand I; Haljasorg T; Koppel IA; Leito I
    J Org Chem; 2016 Sep; 81(17):7349-61. PubMed ID: 27392255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental gas-phase basicity scale of superbasic phosphazenes.
    Kaljurand I; Koppel IA; Kütt A; Rõõm EI; Rodima T; Koppel I; Mishima M; Leito I
    J Phys Chem A; 2007 Feb; 111(7):1245-50. PubMed ID: 17266288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphazenyl Phosphines: The Most Electron-Rich Uncharged Phosphorus Brønsted and Lewis Bases.
    Ullrich S; Kovačević B; Xie X; Sundermeyer J
    Angew Chem Int Ed Engl; 2019 Jul; 58(30):10335-10339. PubMed ID: 31037821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basicity Limits of Neutral Organic Superbases.
    Leito I; Koppel IA; Koppel I; Kaupmees K; Tshepelevitsh S; Saame J
    Angew Chem Int Ed Engl; 2015 Aug; 54(32):9262-5. PubMed ID: 26088063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of Novel Uncharged Organic Superbases: Merging Basicity and Functionality.
    Vazdar K; Margetić D; Kovačević B; Sundermeyer J; Leito I; Jahn U
    Acc Chem Res; 2021 Aug; 54(15):3108-3123. PubMed ID: 34308625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A novel deprotonative functionalization of aromatics with phosphazene base].
    Imahori T
    Yakugaku Zasshi; 2004 Aug; 124(8):509-17. PubMed ID: 15297720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Exceptionally Strong Organic Superbases Based on Aromatic Pnictogen Oxides: Computational DFT Analysis of the Oxygen Basicity in the Gas Phase and Acetonitrile Solution.
    Tandarić T; Vianello R
    J Phys Chem A; 2018 Feb; 122(5):1464-1471. PubMed ID: 29350532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cobaltocenylidene: A Mesoionic Metalloceno Carbene, Stabilized in a Gold(III) Complex.
    Vanicek S; Podewitz M; Hassenrück C; Pittracher M; Kopacka H; Wurst K; Müller T; Liedl KR; Winter RF; Bildstein B
    Chemistry; 2018 Mar; 24(13):3165-3169. PubMed ID: 29328533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic (alkyl)(amino)carbenes (CAACs): stable carbenes on the rise.
    Soleilhavoup M; Bertrand G
    Acc Chem Res; 2015 Feb; 48(2):256-66. PubMed ID: 25515548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strategy for the controllable generation of organic superbases from benchtop-stable salts.
    Sujansky SJ; Hoteling GA; Bandar JS
    Chem Sci; 2024 Jul; 15(26):10018-10026. PubMed ID: 38966380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organocatalyzed Anionic Ring-Opening Polymerizations of
    Wang X; Liu Y; Li Z; Wang H; Gebru H; Chen S; Zhu H; Wei F; Guo K
    ACS Macro Lett; 2017 Dec; 6(12):1331-1336. PubMed ID: 35650812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilizing the Azaazulene Scaffolds in the Design of New Organic Superbases.
    Barić D
    ACS Omega; 2019 Sep; 4(12):15197-15207. PubMed ID: 31552365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First principle studies toward the design of a new class of carbene superbases involving intramolecular H···π interactions.
    Lo R; Ganguly B
    Chem Commun (Camb); 2011 Jul; 47(26):7395-7. PubMed ID: 21573283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of N-heterocyclic carbene basicity in organocatalysis.
    Wang N; Xu J; Lee JK
    Org Biomol Chem; 2018 Sep; 16(37):8230-8244. PubMed ID: 30191938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive Basicity Scales for N-Heterocyclic Carbenes in DMSO: Implications on the Stabilities of N-Heterocyclic Carbene and CO
    Wang Z; Xue XS; Fu Y; Ji P
    Chem Asian J; 2020 Jan; 15(1):169-181. PubMed ID: 31773893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.