These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 34729955)

  • 41. Atomically Structural Regulations of Carbon-Based Single-Atom Catalysts for Electrochemical CO
    Han SG; Ma DD; Zhu QL
    Small Methods; 2021 Aug; 5(8):e2100102. PubMed ID: 34927867
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metal-Support Interactions of Single-Atom Catalysts for Biomedical Applications.
    Shi Q; Yu T; Wu R; Liu J
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):60815-60836. PubMed ID: 34913673
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Emerging Dual-Atomic-Site Catalysts for Efficient Energy Catalysis.
    Zhang W; Chao Y; Zhang W; Zhou J; Lv F; Wang K; Lin F; Luo H; Li J; Tong M; Wang E; Guo S
    Adv Mater; 2021 Sep; 33(36):e2102576. PubMed ID: 34296795
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance.
    Zhuo HY; Zhang X; Liang JX; Yu Q; Xiao H; Li J
    Chem Rev; 2020 Nov; 120(21):12315-12341. PubMed ID: 33112608
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Locally Ordered Single-Atom Catalysts for Electrocatalysis.
    Ren Y; Wang J; Zhang M; Wang Y; Cao Y; Kim DH; Lin Z
    Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202315003. PubMed ID: 37932862
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Emerging materials for electrochemical CO
    Qu G; Wei K; Pan K; Qin J; Lv J; Li J; Ning P
    Nanoscale; 2023 Feb; 15(8):3666-3692. PubMed ID: 36734996
    [TBL] [Abstract][Full Text] [Related]  

  • 47. General Design Concept for Single-Atom Catalysts toward Heterogeneous Catalysis.
    Guo W; Wang Z; Wang X; Wu Y
    Adv Mater; 2021 Aug; 33(34):e2004287. PubMed ID: 34235782
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent advances in single-atom catalysts for advanced oxidation processes in water purification.
    Huang B; Wu Z; Zhou H; Li J; Zhou C; Xiong Z; Pan Z; Yao G; Lai B
    J Hazard Mater; 2021 Jun; 412():125253. PubMed ID: 33548777
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Designed Synthesis and Catalytic Mechanisms of Non-Precious Metal Single-Atom Catalysts for Oxygen Reduction Reaction.
    Tong M; Wang L; Fu H
    Small Methods; 2021 Oct; 5(10):e2100865. PubMed ID: 34927931
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimizing the Activation Energy of Reactive Intermediates on Single-Atom Electrocatalysts: Challenges and Opportunities.
    Shi L; Zhang Q; Yang S; Ren P; Wu Y; Liu S
    Small Methods; 2024 Jan; ():e2301219. PubMed ID: 38180156
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-Atom Nanozymes for Biomedical Applications: Recent Advances and Challenges.
    Tang M; Li J; Cai X; Sun T; Chen C
    Chem Asian J; 2022 Apr; 17(7):e202101422. PubMed ID: 35143111
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-atom catalysts for hydroformylation of olefins.
    Tao S; Yang D; Wang M; Sun G; Xiong G; Gao W; Zhang Y; Pan Y
    iScience; 2023 Mar; 26(3):106183. PubMed ID: 36922997
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-Atom and Dual-Atom Electrocatalysts Derived from Metal Organic Frameworks: Current Progress and Perspectives.
    Chen S; Cui M; Yin Z; Xiong J; Mi L; Li Y
    ChemSusChem; 2021 Jan; 14(1):73-93. PubMed ID: 33089643
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Atomically Dispersed Reactive Centers for Electrocatalytic CO
    Zhang H; Cheng W; Luan D; Lou XWD
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13177-13196. PubMed ID: 33314631
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Understanding Single-Atom Catalysis in View of Theory.
    Zhang W; Fu Q; Luo Q; Sheng L; Yang J
    JACS Au; 2021 Dec; 1(12):2130-2145. PubMed ID: 34977885
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MXenes as Superexcellent Support for Confining Single Atom: Properties, Synthesis, and Electrocatalytic Applications.
    Zhang M; Lai C; Li B; Liu S; Huang D; Xu F; Liu X; Qin L; Fu Y; Li L; Yi H; Chen L
    Small; 2021 Jul; 17(29):e2007113. PubMed ID: 34047018
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sulfur Modified Carbon-Based Single-Atom Catalysts for Electrocatalytic Reactions.
    Li Y; Wei Z; Sun Z; Zhai H; Li S; Chen W
    Small; 2024 May; ():e2401900. PubMed ID: 38798155
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Advances in single-atom catalysts: Design, synthesis and environmental applications.
    Li J; Yang Z; Li Y; Zhang G
    J Hazard Mater; 2022 May; 429():128285. PubMed ID: 35093746
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxidase-Like Fe-N-C Single-Atom Nanozymes for the Detection of Acetylcholinesterase Activity.
    Wu Y; Jiao L; Luo X; Xu W; Wei X; Wang H; Yan H; Gu W; Xu BZ; Du D; Lin Y; Zhu C
    Small; 2019 Oct; 15(43):e1903108. PubMed ID: 31482681
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biochar Meets Single-Atom: A Catalyst for Efficient Utilization in Environmental Protection Applications and Energy Conversion.
    Zhou T; Deng J; Zeng Y; Liu X; Song B; Ye S; Li M; Yang Y; Wang Z; Zhou C
    Small; 2024 Jul; ():e2404254. PubMed ID: 38984755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.