BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 34730546)

  • 21. Mining Clinical Notes for Physical Rehabilitation Exercise Information: Natural Language Processing Algorithm Development and Validation Study.
    Sivarajkumar S; Gao F; Denny P; Aldhahwani B; Visweswaran S; Bove A; Wang Y
    JMIR Med Inform; 2024 Apr; 12():e52289. PubMed ID: 38568736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and Validation of a Model to Identify Critical Brain Injuries Using Natural Language Processing of Text Computed Tomography Reports.
    Torres-Lopez VM; Rovenolt GE; Olcese AJ; Garcia GE; Chacko SM; Robinson A; Gaiser E; Acosta J; Herman AL; Kuohn LR; Leary M; Soto AL; Zhang Q; Fatima S; Falcone GJ; Payabvash MS; Sharma R; Struck AF; Sheth KN; Westover MB; Kim JA
    JAMA Netw Open; 2022 Aug; 5(8):e2227109. PubMed ID: 35972739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Question-and-Answer System to Extract Data From Free-Text Oncological Pathology Reports (CancerBERT Network): Development Study.
    Mitchell JR; Szepietowski P; Howard R; Reisman P; Jones JD; Lewis P; Fridley BL; Rollison DE
    J Med Internet Res; 2022 Mar; 24(3):e27210. PubMed ID: 35319481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of a BERT Natural Language Processing Model for Automating CT and MRI Triage and Protocol Selection.
    Yao J; Alabousi A; Mironov O
    Can Assoc Radiol J; 2024 Jun; ():8465371241255895. PubMed ID: 38832645
    [No Abstract]   [Full Text] [Related]  

  • 25. Natural Language Processing for Automated Classification of Qualitative Data From Interviews of Patients With Cancer.
    Fang C; Markuzon N; Patel N; Rueda JD
    Value Health; 2022 Dec; 25(12):1995-2002. PubMed ID: 35840523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving case duration accuracy of orthopedic surgery using bidirectional encoder representations from Transformers (BERT) on Radiology Reports.
    Zhong W; Yao PY; Boppana SH; Pacheco FV; Alexander BS; Simpson S; Gabriel RA
    J Clin Monit Comput; 2024 Feb; 38(1):221-228. PubMed ID: 37695448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of word embeddings for the biomedical natural language processing.
    Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H
    J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Word2Vec inversion and traditional text classifiers for phenotyping lupus.
    Turner CA; Jacobs AD; Marques CK; Oates JC; Kamen DL; Anderson PE; Obeid JS
    BMC Med Inform Decis Mak; 2017 Aug; 17(1):126. PubMed ID: 28830409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Machine learning based natural language processing of radiology reports in orthopaedic trauma.
    Olthof AW; Shouche P; Fennema EM; IJpma FFA; Koolstra RHC; Stirler VMA; van Ooijen PMA; Cornelissen LJ
    Comput Methods Programs Biomed; 2021 Sep; 208():106304. PubMed ID: 34333208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH; Easter SR
    JAMA Netw Open; 2022 Oct; 5(10):e2234924. PubMed ID: 36197662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating Natural Language Processing and Machine Learning Algorithms to Categorize Oncologic Response in Radiology Reports.
    Chen PH; Zafar H; Galperin-Aizenberg M; Cook T
    J Digit Imaging; 2018 Apr; 31(2):178-184. PubMed ID: 29079959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic Classification of the Korean Triage Acuity Scale in Simulated Emergency Rooms Using Speech Recognition and Natural Language Processing: a Proof of Concept Study.
    Kim D; Oh J; Im H; Yoon M; Park J; Lee J
    J Korean Med Sci; 2021 Jul; 36(27):e175. PubMed ID: 34254471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Building large-scale registries from unstructured clinical notes using a low-resource natural language processing pipeline.
    Tavabi N; Pruneski J; Golchin S; Singh M; Sanborn R; Heyworth B; Landschaft A; Kimia A; Kiapour A
    Artif Intell Med; 2024 May; 151():102847. PubMed ID: 38658131
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring Adoption of Patient Priorities-Aligned Care Using Natural Language Processing of Electronic Health Records: Development and Validation of the Model.
    Razjouyan J; Freytag J; Dindo L; Kiefer L; Odom E; Halaszynski J; Silva JW; Naik AD
    JMIR Med Inform; 2021 Feb; 9(2):e18756. PubMed ID: 33605893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural language processing was effective in assisting rapid title and abstract screening when updating systematic reviews.
    Qin X; Liu J; Wang Y; Liu Y; Deng K; Ma Y; Zou K; Li L; Sun X
    J Clin Epidemiol; 2021 May; 133():121-129. PubMed ID: 33485929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Initial development of tools to identify child abuse and neglect in pediatric primary care.
    Hanson RF; Zhu V; Are F; Espeleta H; Wallis E; Heider P; Kautz M; Lenert L
    BMC Med Inform Decis Mak; 2023 Nov; 23(1):266. PubMed ID: 37978498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine learning in medicine: a practical introduction to natural language processing.
    Harrison CJ; Sidey-Gibbons CJ
    BMC Med Res Methodol; 2021 Jul; 21(1):158. PubMed ID: 34332525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic text classification of actionable radiology reports of tinnitus patients using bidirectional encoder representations from transformer (BERT) and in-domain pre-training (IDPT).
    Li J; Lin Y; Zhao P; Liu W; Cai L; Sun J; Zhao L; Yang Z; Song H; Lv H; Wang Z
    BMC Med Inform Decis Mak; 2022 Jul; 22(1):200. PubMed ID: 35907966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detecting Potentially Harmful and Protective Suicide-Related Content on Twitter: Machine Learning Approach.
    Metzler H; Baginski H; Niederkrotenthaler T; Garcia D
    J Med Internet Res; 2022 Aug; 24(8):e34705. PubMed ID: 35976193
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting Discharge Disposition Following Meningioma Resection Using a Multi-Institutional Natural Language Processing Model.
    Muhlestein WE; Monsour MA; Friedman GN; Zinzuwadia A; Zachariah MA; Coumans JV; Carter BS; Chambless LB
    Neurosurgery; 2021 Mar; 88(4):838-845. PubMed ID: 33483747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.