These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34730587)

  • 1. Unraveling electronic band structure of narrow-bandgap p-n nanojunctions in heterostructured nanowires.
    Zamani RR; Hage FS; Eljarrat A; Namazi L; Ramasse QM; Dick KA
    Phys Chem Chem Phys; 2021 Nov; 23(44):25019-25023. PubMed ID: 34730587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires.
    Zamani RR; Hage FS; Lehmann S; Ramasse QM; Dick KA
    Nano Lett; 2018 Mar; 18(3):1557-1563. PubMed ID: 29116807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type II band alignment in InAs zinc-blende/wurtzite heterostructured nanowires.
    Panda JK; Chakraborty A; Ercolani D; Gemmi M; Sorba L; Roy A
    Nanotechnology; 2016 Oct; 27(41):415201. PubMed ID: 27586817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling Variations in Electronic and Atomic Structures Due to Nanoscale Wurtzite and Zinc Blende Phase Separation in GaAs Nanowires.
    Zeng L; Olsson E
    Nano Lett; 2024 Jun; 24(22):6644-6650. PubMed ID: 38767455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bandgap Energy of Wurtzite InAs Nanowires.
    Rota MB; Ameruddin AS; Fonseka HA; Gao Q; Mura F; Polimeni A; Miriametro A; Tan HH; Jagadish C; Capizzi M
    Nano Lett; 2016 Aug; 16(8):5197-203. PubMed ID: 27467011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays.
    Anttu N; Lehmann S; Storm K; Dick KA; Samuelson L; Wu PM; Pistol ME
    Nano Lett; 2014 Oct; 14(10):5650-5. PubMed ID: 25158002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoluminescence Characteristics of Zinc Blende InAs Nanowires.
    Anyebe EA; Kesaria M
    Sci Rep; 2019 Nov; 9(1):17665. PubMed ID: 31776377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies.
    Dobrovolsky A; Persson PO; Sukrittanon S; Kuang Y; Tu CW; Chen WM; Buyanova IA
    Nano Lett; 2015 Jun; 15(6):4052-8. PubMed ID: 25988267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scanning Tunneling Spectroscopy on InAs-GaSb Esaki Diode Nanowire Devices during Operation.
    Persson O; Webb JL; Dick KA; Thelander C; Mikkelsen A; Timm R
    Nano Lett; 2015 Jun; 15(6):3684-91. PubMed ID: 25927249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterointerface engineering of broken-gap InAs/GaSb multilayer structures.
    Liu JS; Zhu Y; Goley PS; Hudait MK
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2512-7. PubMed ID: 25568961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hard oxide semiconductor with a direct and narrow bandgap and switchable p-n electrical conduction.
    Ovsyannikov SV; Karkin AE; Morozova NV; Shchennikov VV; Bykova E; Abakumov AM; Tsirlin AA; Glazyrin KV; Dubrovinsky L
    Adv Mater; 2014 Dec; 26(48):8185-91. PubMed ID: 25348375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Interfacial Schemes on the Optical and Structural Properties of InAs/GaSb Type-II Superlattices.
    Alshahrani D; Kesaria M; Jiménez JJ; Kwan D; Srivastava V; Delmas M; Morales FM; Liang B; Huffaker D
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8624-8635. PubMed ID: 36724387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Band-inverted gaps in InAs/GaSb and GaSb/InAs core-shell nanowires.
    Luo N; Huang GY; Liao G; Ye LH; Xu HQ
    Sci Rep; 2016 Dec; 6():38698. PubMed ID: 27924856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective-Area MOCVD Growth and Carrier-Transport-Type Control of InAs(Sb)/GaSb Core-Shell Nanowires.
    Ji X; Yang X; Du W; Pan H; Yang T
    Nano Lett; 2016 Dec; 16(12):7580-7587. PubMed ID: 27960521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic Structure Changes Due to Crystal Phase Switching at the Atomic Scale Limit.
    Knutsson JV; Lehmann S; Hjort M; Lundgren E; Dick KA; Timm R; Mikkelsen A
    ACS Nano; 2017 Oct; 11(10):10519-10528. PubMed ID: 28960985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy.
    Erni R; Browning ND
    Ultramicroscopy; 2005 Oct; 104(3-4):176-92. PubMed ID: 15885909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. E(1)(A) electronic band gap in wurtzite InAs nanowires studied by resonant Raman scattering.
    Zardo I; Yazji S; Hörmann N; Hertenberger S; Funk S; Mangialardo S; Morkötter S; Koblmüller G; Postorino P; Abstreiter G
    Nano Lett; 2013 Jul; 13(7):3011-6. PubMed ID: 23701454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of dielectric function and bandgap of germanium telluride using monochromated electron energy-loss spectroscopy.
    Oh JS; Jo KJ; Kang MC; An BS; Kwon Y; Lim HW; Cho MH; Baik H; Yang CW
    Micron; 2023 Sep; 172():103487. PubMed ID: 37285687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of the electronic structure of carbon films using electron energy loss spectroscopy.
    Alexandro I; Papworth AJ; Rafferty B; Amaratunga GAJ ; Kiely CJ; Brown LM
    Ultramicroscopy; 2001 Nov; 90(1):39-45. PubMed ID: 11794628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. InAs1-xPx nanowires for device engineering.
    Persson AI; Björk MT; Jeppesen S; Wagner JB; Wallenberg LR; Samuelson L
    Nano Lett; 2006 Mar; 6(3):403-7. PubMed ID: 16522031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.