These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 34730964)
21. A modeling approach for quantitative assessment of interfacial interaction between two rough particles in colloidal systems. Lu D; Fatehi P J Colloid Interface Sci; 2021 Apr; 587():24-38. PubMed ID: 33360896 [TBL] [Abstract][Full Text] [Related]
22. Membrane fouling in a submerged membrane bioreactor: An unified approach to construct topography and to evaluate interaction energy between two randomly rough surfaces. Cai X; Shen L; Zhang M; Chen J; Hong H; Lin H Bioresour Technol; 2017 Nov; 243():1121-1132. PubMed ID: 28764126 [TBL] [Abstract][Full Text] [Related]
23. A novel integrated method for quantification of interfacial interactions between two rough bioparticles. Yu G; Cai X; Shen L; Chen J; Hong H; Lin H; Li R J Colloid Interface Sci; 2018 Apr; 516():295-303. PubMed ID: 29408116 [TBL] [Abstract][Full Text] [Related]
24. General Potential for Anisotropic Colloid-Surface Interactions. Torres-Díaz I; Bevan MA Langmuir; 2017 May; 33(17):4356-4365. PubMed ID: 28388062 [TBL] [Abstract][Full Text] [Related]
25. The deposition of colloidal particles from a sessile drop of a volatile suspension subject to particle adsorption and coagulation. Zigelman A; Manor O J Colloid Interface Sci; 2018 Jan; 509():195-208. PubMed ID: 28910685 [TBL] [Abstract][Full Text] [Related]
26. The impact of nanoscale chemical features on micron-scale adhesion: crossover from heterogeneity-dominated to mean-field behavior. Duffadar R; Kalasin S; Davis JM; Santore MM J Colloid Interface Sci; 2009 Sep; 337(2):396-407. PubMed ID: 19539949 [TBL] [Abstract][Full Text] [Related]
27. Direct Measurement of the Effect of Surface Roughness on the Colloidal Forces between a Particle and Flat Plate. Suresh L; Walz JY J Colloid Interface Sci; 1997 Dec; 196(2):177-190. PubMed ID: 9792743 [TBL] [Abstract][Full Text] [Related]
28. DLVO and XDLVO calculations for bacteriophage MS2 adhesion to iron oxide particles. Park JA; Kim SB J Contam Hydrol; 2015 Oct; 181():131-40. PubMed ID: 25704059 [TBL] [Abstract][Full Text] [Related]
29. A Model for Calculating Electrostatic Interactions between Colloidal Particles of Arbitrary Surface Topology. Sun N; Walz JY J Colloid Interface Sci; 2001 Feb; 234(1):90-105. PubMed ID: 11161495 [TBL] [Abstract][Full Text] [Related]
30. Roughness in Surface Force Measurements: Extension of DLVO Theory To Describe the Forces between Hafnia Surfaces. Eom N; Parsons DF; Craig VSJ J Phys Chem B; 2017 Jul; 121(26):6442-6453. PubMed ID: 28598621 [TBL] [Abstract][Full Text] [Related]
31. Scale-independent model based on fractal theory for calculating the adhesion force between a particle and rough surfaces. Wang X; Wang W; Zhu Y; Zhang J; Zhang H Phys Rev E; 2024 Sep; 110(3-1):034802. PubMed ID: 39425400 [TBL] [Abstract][Full Text] [Related]
32. Quantitative evaluation of the interfacial interactions between a randomly rough sludge floc and membrane surface in a membrane bioreactor based on fractal geometry. Zhang M; Zhou X; Shen L; Cai X; Wang F; Chen J; Lin H; Li R; Wu X; Liao BQ Bioresour Technol; 2017 Jun; 234():198-207. PubMed ID: 28319768 [TBL] [Abstract][Full Text] [Related]
33. Surface force measurements between titanium dioxide surfaces prepared by atomic layer deposition in electrolyte solutions reveal non-DLVO interactions: influence of water and argon plasma cleaning. Walsh RB; Evans D; Craig VS Langmuir; 2014 Mar; 30(8):2093-100. PubMed ID: 24548170 [TBL] [Abstract][Full Text] [Related]
34. Aquasols: on the role of secondary minima. Hahn MW; Abadzic D; O'Melia CR Environ Sci Technol; 2004 Nov; 38(22):5915-24. PubMed ID: 15573589 [TBL] [Abstract][Full Text] [Related]
35. Electrostatic interactions between rough dielectric particles. Gorman M; Ruan X; Ni R Phys Rev E; 2024 Mar; 109(3-1):034902. PubMed ID: 38632820 [TBL] [Abstract][Full Text] [Related]
36. Modeling and validation of the van der Waals force during the adhesion of nanoscale objects to rough surfaces: a detailed description. Jaiswal RP; Kumar G; Kilroy CM; Beaudoin SP Langmuir; 2009 Sep; 25(18):10612-23. PubMed ID: 19735133 [TBL] [Abstract][Full Text] [Related]
37. Non-linear, non-monotonic effect of nano-scale roughness on particle deposition in absence of an energy barrier: Experiments and modeling. Jin C; Glawdel T; Ren CL; Emelko MB Sci Rep; 2015 Dec; 5():17747. PubMed ID: 26658159 [TBL] [Abstract][Full Text] [Related]
38. Site-specific retention of colloids at rough rock surfaces. Darbha GK; Fischer C; Luetzenkirchen J; Schäfer T Environ Sci Technol; 2012 Sep; 46(17):9378-87. PubMed ID: 22861645 [TBL] [Abstract][Full Text] [Related]
39. Interaction energies between oxide surfaces and multiple phosphatidylcholine bilayers from extended-DLVO theory. Oleson TA; Sahai N J Colloid Interface Sci; 2010 Dec; 352(2):316-26. PubMed ID: 20869066 [TBL] [Abstract][Full Text] [Related]
40. Nanoscale Topographical Fluctuations: A Key Factor for Evaporative Colloidal Self-Assembly. Lohani D; Sarkar S Langmuir; 2018 Oct; 34(43):12751-12758. PubMed ID: 30299962 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]