BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 34731180)

  • 21. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial.
    Choueiri TK; Escudier B; Powles T; Tannir NM; Mainwaring PN; Rini BI; Hammers HJ; Donskov F; Roth BJ; Peltola K; Lee JL; Heng DYC; Schmidinger M; Agarwal N; Sternberg CN; McDermott DF; Aftab DT; Hessel C; Scheffold C; Schwab G; Hutson TE; Pal S; Motzer RJ;
    Lancet Oncol; 2016 Jul; 17(7):917-927. PubMed ID: 27279544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes.
    Matre P; Velez J; Jacamo R; Qi Y; Su X; Cai T; Chan SM; Lodi A; Sweeney SR; Ma H; Davis RE; Baran N; Haferlach T; Su X; Flores ER; Gonzalez D; Konoplev S; Samudio I; DiNardo C; Majeti R; Schimmer AD; Li W; Wang T; Tiziani S; Konopleva M
    Oncotarget; 2016 Nov; 7(48):79722-79735. PubMed ID: 27806325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Outcomes based on plasma biomarkers in METEOR, a randomized phase 3 trial of cabozantinib vs everolimus in advanced renal cell carcinoma.
    Powles T; Choueiri TK; Motzer RJ; Jonasch E; Pal S; Tannir NM; Signoretti S; Kaldate R; Scheffold C; Wang E; Aftab DT; Escudier B; George DJ
    BMC Cancer; 2021 Aug; 21(1):904. PubMed ID: 34364385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing Metabolic Intervention with a Glutaminase Inhibitor in Real-Time by Hyperpolarized Magnetic Resonance in Acute Myeloid Leukemia.
    Zacharias NM; Baran N; Shanmugavelandy SS; Lee J; Lujan JV; Dutta P; Millward SW; Cai T; Wood CG; Piwnica-Worms D; Konopleva M; Bhattacharya PK
    Mol Cancer Ther; 2019 Nov; 18(11):1937-1946. PubMed ID: 31387889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cabozantinib for the treatment of renal cell carcinoma.
    Escudier B; Lougheed JC; Albiges L
    Expert Opin Pharmacother; 2016 Dec; 17(18):2499-2504. PubMed ID: 27835047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual inhibition of glutaminase and carnitine palmitoyltransferase decreases growth and migration of glutaminase inhibition-resistant triple-negative breast cancer cells.
    Reis LMD; Adamoski D; Ornitz Oliveira Souza R; Rodrigues Ascenção CF; Sousa de Oliveira KR; Corrêa-da-Silva F; Malta de Sá Patroni F; Meira Dias M; Consonni SR; Mendes de Moraes-Vieira PM; Silber AM; Dias SMG
    J Biol Chem; 2019 Jun; 294(24):9342-9357. PubMed ID: 31040181
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain Tumor Stem Cell Dependence on Glutaminase Reveals a Metabolic Vulnerability through the Amino Acid Deprivation Response Pathway.
    Restall IJ; Cseh O; Richards LM; Pugh TJ; Luchman HA; Weiss S
    Cancer Res; 2020 Dec; 80(24):5478-5490. PubMed ID: 33106333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A facile and sensitive method of quantifying glutaminase binding to its inhibitor CB-839 in tissues.
    Chen Y; Zhao Y; Bajor DL; Wang Z; Selfridge JE
    J Genet Genomics; 2020 Jul; 47(7):389-395. PubMed ID: 33004309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The tumor suppressor NDRG2 cooperates with an mTORC1 inhibitor to suppress the Warburg effect in renal cell carcinoma.
    Li X; Hou G; Zhu Z; Yan F; Wang F; Wei D; Zheng Y; Yuan J; Zheng W; Zhang G; Meng P; Guo Y; Li X; Yao L; Shen L; Yuan J
    Invest New Drugs; 2020 Aug; 38(4):956-966. PubMed ID: 31463638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment.
    Tanaka K; Sasayama T; Irino Y; Takata K; Nagashima H; Satoh N; Kyotani K; Mizowaki T; Imahori T; Ejima Y; Masui K; Gini B; Yang H; Hosoda K; Sasaki R; Mischel PS; Kohmura E
    J Clin Invest; 2015 Apr; 125(4):1591-602. PubMed ID: 25798620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glutaminase inhibition improves FLT3 inhibitor therapy for acute myeloid leukemia.
    Gregory MA; Nemkov T; Reisz JA; Zaberezhnyy V; Hansen KC; D'Alessandro A; DeGregori J
    Exp Hematol; 2018 Feb; 58():52-58. PubMed ID: 28947392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting glutamine-addiction and overcoming CDK4/6 inhibitor resistance in human esophageal squamous cell carcinoma.
    Qie S; Yoshida A; Parnham S; Oleinik N; Beeson GC; Beeson CC; Ogretmen B; Bass AJ; Wong KK; Rustgi AK; Diehl JA
    Nat Commun; 2019 Mar; 10(1):1296. PubMed ID: 30899002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blocking IL1 Beta Promotes Tumor Regression and Remodeling of the Myeloid Compartment in a Renal Cell Carcinoma Model: Multidimensional Analyses.
    Aggen DH; Ager CR; Obradovic AZ; Chowdhury N; Ghasemzadeh A; Mao W; Chaimowitz MG; Lopez-Bujanda ZA; Spina CS; Hawley JE; Dallos MC; Zhang C; Wang V; Li H; Guo XV; Drake CG
    Clin Cancer Res; 2021 Jan; 27(2):608-621. PubMed ID: 33148676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Population exposure-response analysis of cabozantinib efficacy and safety endpoints in patients with renal cell carcinoma.
    Lacy S; Nielsen J; Yang B; Miles D; Nguyen L; Hutmacher M
    Cancer Chemother Pharmacol; 2018 Jun; 81(6):1061-1070. PubMed ID: 29667066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Treatment of advanced renal cell carcinoma patients with cabozantinib, an oral multityrosine kinase inhibitor of MET, AXL and VEGF receptors.
    Desai A; Small EJ
    Future Oncol; 2019 Jul; 15(20):2337-2348. PubMed ID: 31184937
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vascular disruption in combination with mTOR inhibition in renal cell carcinoma.
    Ellis L; Shah P; Hammers H; Lehet K; Sotomayor P; Azabdaftari G; Seshadri M; Pili R
    Mol Cancer Ther; 2012 Feb; 11(2):383-92. PubMed ID: 22084164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cabozantinib inhibits tumor growth and metastasis of a patient-derived xenograft model of papillary renal cell carcinoma with MET mutation.
    Zhao H; Nolley R; Chan AMW; Rankin EB; Peehl DM
    Cancer Biol Ther; 2017 Nov; 18(11):863-871. PubMed ID: 27715452
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5α-dihydrotestosterone regulation.
    Cardoso HJ; Figueira MI; Vaz CV; Carvalho TMA; Brás LA; Madureira PA; Oliveira PJ; Sardão VA; Socorro S
    Cell Oncol (Dordr); 2021 Apr; 44(2):385-403. PubMed ID: 33464483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glutamine metabolism via glutaminase 1 in autosomal-dominant polycystic kidney disease.
    Soomro I; Sun Y; Li Z; Diggs L; Hatzivassiliou G; Thomas AG; Rais R; Parker SJ; Slusher BS; Kimmelman AC; Somlo S; Skolnik EY
    Nephrol Dial Transplant; 2018 Aug; 33(8):1343-1353. PubMed ID: 29420817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cabozantinib, a New Standard of Care for Patients With Advanced Renal Cell Carcinoma and Bone Metastases? Subgroup Analysis of the METEOR Trial.
    Escudier B; Powles T; Motzer RJ; Olencki T; Arén Frontera O; Oudard S; Rolland F; Tomczak P; Castellano D; Appleman LJ; Drabkin H; Vaena D; Milwee S; Youkstetter J; Lougheed JC; Bracarda S; Choueiri TK
    J Clin Oncol; 2018 Mar; 36(8):765-772. PubMed ID: 29309249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.