These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34731339)

  • 1. Strain localization in planar shear of granular media: the role of porosity and boundary conditions.
    Parez S; Travnickova T; Svoboda M; Aharonov E
    Eur Phys J E Soft Matter; 2021 Nov; 44(11):134. PubMed ID: 34731339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasistatic to inertial transition in granular materials and the role of fluctuations.
    Gaume J; Chambon G; Naaim M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051304. PubMed ID: 22181408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheophysics of dense granular materials: discrete simulation of plane shear flows.
    da Cruz F; Emam S; Prochnow M; Roux JN; Chevoir F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021309. PubMed ID: 16196558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media.
    Antony SJ; Kruyt NP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031308. PubMed ID: 19391936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-to-Friction Transition in Simulated Calcite Gouge: Experiments and Microphysical Modeling.
    Chen J; Verberne BA; Niemeijer AR
    J Geophys Res Solid Earth; 2020 Nov; 125(11):e2020JB019970. PubMed ID: 33381362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear strength of wet granular materials: Macroscopic cohesion and effective stress : Discrete numerical simulations, confronted to experimental measurements.
    Badetti M; Fall A; Chevoir F; Roux JN
    Eur Phys J E Soft Matter; 2018 May; 41(5):68. PubMed ID: 29802504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regime transitions of granular flow in a shear cell: a micromechanical study.
    Wang X; Zhu HP; Luding S; Yu AB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032203. PubMed ID: 24125257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Annular shear of cohesionless granular materials: from the inertial to quasistatic regime.
    Koval G; Roux JN; Corfdir A; Chevoir F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021306. PubMed ID: 19391738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region.
    Shojaaee Z; Roux JN; Chevoir F; Wolf DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011301. PubMed ID: 23005405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial shear flow of assemblies of frictionless polygons: Rheology and microstructure.
    Azéma É; Radjaï F; Roux JN
    Eur Phys J E Soft Matter; 2018 Jan; 41(1):2. PubMed ID: 29299695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization and instability in sheared granular materials: Role of friction and vibration.
    Kothari KR; Elbanna AE
    Phys Rev E; 2017 Feb; 95(2-1):022901. PubMed ID: 28297960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An unload-induced direct-shear model for granular gouge friction in rock discontinuities.
    Wu W; Zou Y; Li X; Zhao J
    Rev Sci Instrum; 2014 Sep; 85(9):093902. PubMed ID: 25273734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frictionless bead packs have macroscopic friction, but no dilatancy.
    Peyneau PE; Roux JN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011307. PubMed ID: 18763948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheology of cohesive granular materials across multiple dense-flow regimes.
    Gu Y; Chialvo S; Sundaresan S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032206. PubMed ID: 25314436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuum approach to wide shear zones in quasistatic granular matter.
    Depken M; van Saarloos W; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031302. PubMed ID: 16605512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local fluctuations and spatial correlations in granular flows under constant-volume quasistatic shear.
    Guo N; Zhao J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042208. PubMed ID: 24827242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear-Jammed, Fragile, and Steady States in Homogeneously Strained Granular Materials.
    Zhao Y; Barés J; Zheng H; Socolar JES; Behringer RP
    Phys Rev Lett; 2019 Oct; 123(15):158001. PubMed ID: 31702280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow of wet granular materials: A numerical study.
    Khamseh S; Roux JN; Chevoir F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022201. PubMed ID: 26382388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear profiles and localization in simulations of granular materials.
    Aharonov E; Sparks D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051302. PubMed ID: 12059546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.