These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 34731470)

  • 1. Predicting Residence Time of GPCR Ligands with Machine Learning.
    Potterton A; Heifetz A; Townsend-Nicholson A
    Methods Mol Biol; 2022; 2390():191-205. PubMed ID: 34731470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Baseline Model for Predicting Protein-Ligand Unbinding Kinetics through Machine Learning.
    Amangeldiuly N; Karlov D; Fedorov MV
    J Chem Inf Model; 2020 Dec; 60(12):5946-5956. PubMed ID: 33183000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Machine Learning Approach for the Discovery of Ligand-Specific Functional Mechanisms of GPCRs.
    Plante A; Shore DM; Morra G; Khelashvili G; Weinstein H
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31159491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning model for classifying G-protein-coupled receptors as agonists or antagonists.
    Oh J; Ceong HT; Na D; Park C
    BMC Bioinformatics; 2022 Aug; 23(Suppl 9):346. PubMed ID: 35982407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Analysis of τRAMD Trajectories to Decipher Molecular Determinants of Drug-Target Residence Times.
    Kokh DB; Kaufmann T; Kister B; Wade RC
    Front Mol Biosci; 2019; 6():36. PubMed ID: 31179286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combination of machine learning and infrequent metadynamics to efficiently predict kinetic rates, transition states, and molecular determinants of drug dissociation from G protein-coupled receptors.
    Lamim Ribeiro JM; Provasi D; Filizola M
    J Chem Phys; 2020 Sep; 153(12):124105. PubMed ID: 33003748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Workflow for Refining AlphaFold Models in Drug Design Using Kinetic and Thermodynamic Binding Calculations: A Case Study for the Unresolved Inactive Human Adenosine A
    Stampelou M; Ladds G; Kolocouris A
    J Phys Chem B; 2024 Feb; 128(4):914-936. PubMed ID: 38236582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Impact of Crystallographic Data for the Development of Machine Learning Models to Predict Protein-Ligand Binding Affinity.
    Veit-Acosta M; de Azevedo Junior WF
    Curr Med Chem; 2021 Oct; 28(34):7006-7022. PubMed ID: 33568025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of GPCR-Ligand Binding Using Machine Learning Algorithms.
    Seo S; Choi J; Ahn SK; Kim KW; Kim J; Choi J; Kim J; Ahn J
    Comput Math Methods Med; 2018; 2018():6565241. PubMed ID: 29666662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of ligands for G protein-coupled receptor stability.
    Zhang X; Stevens RC; Xu F
    Trends Biochem Sci; 2015 Feb; 40(2):79-87. PubMed ID: 25601764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular interaction fingerprint approaches for GPCR drug discovery.
    Vass M; Kooistra AJ; Ritschel T; Leurs R; de Esch IJ; de Graaf C
    Curr Opin Pharmacol; 2016 Oct; 30():59-68. PubMed ID: 27479316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact, determination and prediction of drug-receptor residence times for GPCRs.
    Tautermann CS
    Curr Opin Pharmacol; 2016 Oct; 30():22-26. PubMed ID: 27428776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bell-Evans model and steered molecular dynamics in uncovering the dissociation kinetics of ligands targeting G-protein-coupled receptors.
    Akhunzada MJ; Yoon HJ; Deb I; Braka A; Wu S
    Sci Rep; 2022 Sep; 12(1):15972. PubMed ID: 36153364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Free-Energy Calculation and Machine Learning Methods for Understanding Ligand Unbinding Kinetics.
    Badaoui M; Buigues PJ; Berta D; Mandana GM; Gu H; Földes T; Dickson CJ; Hornak V; Kato M; Molteni C; Parsons S; Rosta E
    J Chem Theory Comput; 2022 Apr; 18(4):2543-2555. PubMed ID: 35195418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Prediction of Compound-Protein Interactions for Orphan Targets Using CGBVS.
    Kanai C; Kawasaki E; Murakami R; Morita Y; Yoshimori A
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of machine learning in GPCR bioactive ligand discovery.
    Jabeen A; Ranganathan S
    Curr Opin Struct Biol; 2019 Apr; 55():66-76. PubMed ID: 31005679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of ligand binding to GPCR: Residence time of melanocortins and its modulation.
    Rinken A; Veiksina S; Kopanchuk S
    Pharmacol Res; 2016 Nov; 113(Pt B):747-753. PubMed ID: 27268144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can residence time offer a useful strategy to target agonist drugs for sustained GPCR responses?
    Hothersall JD; Brown AJ; Dale I; Rawlins P
    Drug Discov Today; 2016 Jan; 21(1):90-96. PubMed ID: 26226643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Luciferase Complementation Approaches to Measure GPCR Signaling Kinetics and Bias.
    Dijon NC; Nesheva DN; Holliday ND
    Methods Mol Biol; 2021; 2268():249-274. PubMed ID: 34085274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-target residence time--a case for G protein-coupled receptors.
    Guo D; Hillger JM; IJzerman AP; Heitman LH
    Med Res Rev; 2014 Jul; 34(4):856-92. PubMed ID: 24549504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.