BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 34731472)

  • 1. Deep Neural Networks for QSAR.
    Xu Y
    Methods Mol Biol; 2022; 2390():233-260. PubMed ID: 34731472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration of chemical space with partial labeled noisy student self-training and self-supervised graph embedding.
    Liu Y; Lim H; Xie L
    BMC Bioinformatics; 2022 May; 23(Suppl 3):158. PubMed ID: 35501680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Structure Activity/Toxicity Relationship through Neural Networks for Drug Discovery or Regulatory Use.
    Novič M
    Curr Top Med Chem; 2023; 23(29):2792-2804. PubMed ID: 37867278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A natural language processing approach based on embedding deep learning from heterogeneous compounds for quantitative structure-activity relationship modeling.
    Bouhedjar K; Boukelia A; Khorief Nacereddine A; Boucheham A; Belaidi A; Djerourou A
    Chem Biol Drug Des; 2020 Sep; 96(3):961-972. PubMed ID: 33058460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRNNTL: Convolutional Recurrent Neural Network and Transfer Learning for QSAR Modeling in Organic Drug and Material Discovery.
    Li Y; Xu Y; Yu Y
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method.
    Wu Z; Jiang D; Hsieh CY; Chen G; Liao B; Cao D; Hou T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Could deep learning in neural networks improve the QSAR models?
    Gini G; Zanoli F; Gamba A; Raitano G; Benfenati E
    SAR QSAR Environ Res; 2019 Sep; 30(9):617-642. PubMed ID: 31460798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. QSAR modeling without descriptors using graph convolutional neural networks: the case of mutagenicity prediction.
    Hung C; Gini G
    Mol Divers; 2021 Aug; 25(3):1283-1299. PubMed ID: 34146224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of Deep and Shallow Neural Networks, the Universal Approximation Theorem, Activity Cliffs, and QSAR.
    Winkler DA; Le TC
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 27783464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological regression as an interpretable and efficient tool for quantitative structure-activity relationship modeling.
    Zhang R; Nolte D; Sanchez-Villalobos C; Ghosh S; Pal R
    Nat Commun; 2024 Jun; 15(1):5072. PubMed ID: 38871711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets.
    Zhou Y; Cahya S; Combs SA; Nicolaou CA; Wang J; Desai PV; Shen J
    J Chem Inf Model; 2019 Mar; 59(3):1005-1016. PubMed ID: 30586300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning for In Silico ADMET Prediction.
    Jia L; Gao H
    Methods Mol Biol; 2022; 2390():447-460. PubMed ID: 34731482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Analysis of QSAR Research Based on Machine Learning Concepts.
    Keyvanpour MR; Shirzad MB
    Curr Drug Discov Technol; 2021; 18(1):17-30. PubMed ID: 32178612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving quantitative structure-activity relationship models using Artificial Neural Networks trained with dropout.
    Mendenhall J; Meiler J
    J Comput Aided Mol Des; 2016 Feb; 30(2):177-89. PubMed ID: 26830599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR.
    Tropsha A; Isayev O; Varnek A; Schneider G; Cherkasov A
    Nat Rev Drug Discov; 2024 Feb; 23(2):141-155. PubMed ID: 38066301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative structure-activity relationship: promising advances in drug discovery platforms.
    Wang T; Wu MB; Lin JP; Yang LR
    Expert Opin Drug Discov; 2015 Dec; 10(12):1283-300. PubMed ID: 26358617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Deep Learning-Based Chemical System for QSAR Prediction.
    Hu S; Chen P; Gu P; Wang B
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):3020-3028. PubMed ID: 32142459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADis-QSAR: a machine learning model based on biological activity differences of compounds.
    Park GJ; Kang NS
    J Comput Aided Mol Des; 2023 Sep; 37(9):435-451. PubMed ID: 37382799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.