These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 34731773)
1. Curriculum learning for improved femur fracture classification: Scheduling data with prior knowledge and uncertainty. Jiménez-Sánchez A; Mateus D; Kirchhoff S; Kirchhoff C; Biberthaler P; Navab N; González Ballester MA; Piella G Med Image Anal; 2022 Jan; 75():102273. PubMed ID: 34731773 [TBL] [Abstract][Full Text] [Related]
2. Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer. Joo MW; Ko T; Kim MS; Lee YS; Shin SH; Chung YG; Lee HK Clin Orthop Relat Res; 2023 Nov; 481(11):2247-2256. PubMed ID: 37615504 [TBL] [Abstract][Full Text] [Related]
3. Hierarchical fracture classification of proximal femur X-Ray images using a multistage Deep Learning approach. Tanzi L; Vezzetti E; Moreno R; Aprato A; Audisio A; Massè A Eur J Radiol; 2020 Dec; 133():109373. PubMed ID: 33126175 [TBL] [Abstract][Full Text] [Related]
4. Automatic multi-class intertrochanteric femur fracture detection from CT images based on AO/OTA classification using faster R-CNN-BO method. Yoon SJ; Hyong Kim T; Joo SB; Eel Oh S J Appl Biomed; 2020 Dec; 18(4):97-105. PubMed ID: 34907762 [TBL] [Abstract][Full Text] [Related]
5. Precise proximal femur fracture classification for interactive training and surgical planning. Jiménez-Sánchez A; Kazi A; Albarqouni S; Kirchhoff C; Biberthaler P; Navab N; Kirchhoff S; Mateus D Int J Comput Assist Radiol Surg; 2020 May; 15(5):847-857. PubMed ID: 32335786 [TBL] [Abstract][Full Text] [Related]
6. Automated classification of hip fractures using deep convolutional neural networks with orthopedic surgeon-level accuracy: ensemble decision-making with antero-posterior and lateral radiographs. Yamada Y; Maki S; Kishida S; Nagai H; Arima J; Yamakawa N; Iijima Y; Shiko Y; Kawasaki Y; Kotani T; Shiga Y; Inage K; Orita S; Eguchi Y; Takahashi H; Yamashita T; Minami S; Ohtori S Acta Orthop; 2020 Dec; 91(6):699-704. PubMed ID: 32783544 [TBL] [Abstract][Full Text] [Related]
7. TEM virus images: Benchmark dataset and deep learning classification. Matuszewski DJ; Sintorn IM Comput Methods Programs Biomed; 2021 Sep; 209():106318. PubMed ID: 34375851 [TBL] [Abstract][Full Text] [Related]
9. Paced-curriculum distillation with prediction and label uncertainty for image segmentation. Islam M; Seenivasan L; Sharan SP; Viekash VK; Gupta B; Glocker B; Ren H Int J Comput Assist Radiol Surg; 2023 Oct; 18(10):1875-1883. PubMed ID: 36862365 [TBL] [Abstract][Full Text] [Related]
10. Improving Medical Images Classification With Label Noise Using Dual-Uncertainty Estimation. Ju L; Wang X; Wang L; Mahapatra D; Zhao X; Zhou Q; Liu T; Ge Z IEEE Trans Med Imaging; 2022 Jun; 41(6):1533-1546. PubMed ID: 34995185 [TBL] [Abstract][Full Text] [Related]
11. Targeted transfer learning to improve performance in small medical physics datasets. Romero M; Interian Y; Solberg T; Valdes G Med Phys; 2020 Dec; 47(12):6246-6256. PubMed ID: 33007112 [TBL] [Abstract][Full Text] [Related]
12. Artificial intelligence-based classification of bone tumors in the proximal femur on plain radiographs: System development and validation. Park CW; Oh SJ; Kim KS; Jang MC; Kim IS; Lee YK; Chung MJ; Cho BH; Seo SW PLoS One; 2022; 17(2):e0264140. PubMed ID: 35202410 [TBL] [Abstract][Full Text] [Related]
13. A CNN-based unified framework utilizing projection loss in unison with label noise handling for multiple Myeloma cancer diagnosis. Gehlot S; Gupta A; Gupta R Med Image Anal; 2021 Aug; 72():102099. PubMed ID: 34098240 [TBL] [Abstract][Full Text] [Related]
14. Knowledge-Guided Multiview Deep Curriculum Learning for Elbow Fracture Classification. Luo J; Kitamura G; Arefan D; Doganay E; Panigrahy A; Wu S Mach Learn Med Imaging; 2021 Sep; 12966():555-564. PubMed ID: 37808083 [TBL] [Abstract][Full Text] [Related]
15. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images. Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254 [TBL] [Abstract][Full Text] [Related]
17. Memory-aware curriculum federated learning for breast cancer classification. Jiménez-Sánchez A; Tardy M; González Ballester MA; Mateus D; Piella G Comput Methods Programs Biomed; 2023 Feb; 229():107318. PubMed ID: 36592580 [TBL] [Abstract][Full Text] [Related]
18. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation. Liu L; Zhang Z; Li S; Ma K; Zheng Y Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837 [TBL] [Abstract][Full Text] [Related]
19. Quantifying uncertainty in machine learning classifiers for medical imaging. Valen J; Balki I; Mendez M; Qu W; Levman J; Bilbily A; Tyrrell PN Int J Comput Assist Radiol Surg; 2022 Apr; 17(4):711-718. PubMed ID: 35278156 [TBL] [Abstract][Full Text] [Related]
20. A fully automated sex estimation for proximal femur X-ray images through deep learning detection and classification. Li Y; Niu C; Wang J; Xu Y; Dai H; Xiong T; Yu D; Guo H; Liang W; Deng Z; Lv J; Zhang L Leg Med (Tokyo); 2022 Jul; 57():102056. PubMed ID: 35430525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]