These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 34731846)
1. Droplet epitaxy of InAs/InP quantum dots via MOVPE by using an InGaAs interlayer. Sala EM; Godsland M; Na YI; Trapalis A; Heffernan J Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34731846 [TBL] [Abstract][Full Text] [Related]
2. Optical study of extended-molecular-layer flat islands in lattice-matched In0.53Ga0.47As/InP and In0.53Ga0.47As/In1-xGaxAsyP1-y quantum wells grown by low-pressure metal-organic vapor-phase epitaxy with different interruption cycles. Sauer R; Nilsson S; Roentgen P; Heuberger W; Graf V; Hangleiter A; Spycher R Phys Rev B Condens Matter; 1992 Oct; 46(15):9525-9537. PubMed ID: 10002761 [No Abstract] [Full Text] [Related]
3. Study of Size, Shape, and Etch pit formation in InAs/InP Droplet Epitaxy Quantum Dots. Gajjela RSR; van Venrooij NRS; da Cruz AR; Skiba-Szymanska J; Stevenson RM; Shields AJ; Pryor CE; Koenraad PM Nanotechnology; 2022 May; 33(30):. PubMed ID: 35395644 [TBL] [Abstract][Full Text] [Related]
4. Control of Morphology and Substrate Etching in InAs/InP Droplet Epitaxy Quantum Dots for Single and Entangled Photon Emitters. Gajjela RSR; Sala EM; Heffernan J; Koenraad PM ACS Appl Nano Mater; 2022 Jun; 5(6):8070-8079. PubMed ID: 35783681 [TBL] [Abstract][Full Text] [Related]
5. Fabrication and Characterization of In Shin SH; Shim JP; Jang H; Jang JH Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677117 [TBL] [Abstract][Full Text] [Related]
6. Carrier transfer efficiency and its influence on emission properties of telecom wavelength InP-based quantum dot - quantum well structures. Rudno-Rudziński W; Syperek M; Andrzejewski J; Rogowicz E; Eisenstein G; Bauer S; Sichkovskyi VI; Reithmaier JP; Sęk G Sci Rep; 2018 Aug; 8(1):12317. PubMed ID: 30120329 [TBL] [Abstract][Full Text] [Related]
7. InGaAs quantum dot chains grown by twofold selective area molecular beam epitaxy. Barbot C; Rondeau-Body C; Coinon C; Deblock Y; Tilmant P; Vaurette F; Yarekha D; Berthe M; Thomas L; Diesinger H; Capiod P; Desplanque L; Grandidier B Nanotechnology; 2024 Jul; 35(39):. PubMed ID: 38964286 [TBL] [Abstract][Full Text] [Related]
8. Dependence of the electrical and optical properties on growth interruption in AlAs/In0.53Ga0.47As/InAs resonant tunneling diodes. Zhang Y; Guan M; Liu X; Zeng Y Nanoscale Res Lett; 2011 Nov; 6(1):603. PubMed ID: 22112249 [TBL] [Abstract][Full Text] [Related]
9. First-step nucleation growth dependence of InAs/InGaAs/InP quantum dot formation in two-step growth. Yin Z; Tang X; Zhang J; Deny S; Teng J; Du A; Chin MK Nanotechnology; 2008 Feb; 19(8):085603. PubMed ID: 21730727 [TBL] [Abstract][Full Text] [Related]
10. Effect of surface gallium termination on the formation and emission energy of an InGaAs wetting layer during the growth of InGaAs quantum dots by droplet epitaxy. Fricker D; Atkinson P; Jin X; Lepsa M; Zeng Z; Kovács A; Kibkalo L; Dunin-Borkowski RE; Kardynał BE Nanotechnology; 2023 Jan; 34(14):. PubMed ID: 36595322 [TBL] [Abstract][Full Text] [Related]
11. O-Band Emitting InAs Quantum Dots Grown By MOCVD On A 300 mm Ge-Buffered Si (001) Substrate. Abouzaid O; Mehdi H; Martin M; Moeyaert J; Salem B; David S; Souifi A; Chauvin N; Hartmann JM; Ilahi B; Morris D; Ahaitouf A; Ahaitouf A; Baron T Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33297597 [TBL] [Abstract][Full Text] [Related]
12. Damage-Free Smooth-Sidewall InGaAs Nanopillar Array by Metal-Assisted Chemical Etching. Kong L; Song Y; Kim JD; Yu L; Wasserman D; Chim WK; Chiam SY; Li X ACS Nano; 2017 Oct; 11(10):10193-10205. PubMed ID: 28880533 [TBL] [Abstract][Full Text] [Related]
13. Defect States in InP/InGaAs/InP Heterostructures by Current-Voltage Characteristics and Deep Level Transient Spectroscopy. Vu TKO; Lee KS; Lee SJ; Kim EK J Nanosci Nanotechnol; 2018 Sep; 18(9):6239-6243. PubMed ID: 29677773 [TBL] [Abstract][Full Text] [Related]
14. InAs quantum dots capped by GaAs, In0.4Ga0.6As dots, and In0.2Ga0.8As well. Fu Y; Wang SM; Ferdos F; Sadeghi M; Larsson A J Nanosci Nanotechnol; 2002; 2(3-4):421-6. PubMed ID: 12908273 [TBL] [Abstract][Full Text] [Related]
15. Size control of InP nanowires by Sasaki M; Akamatsu T; Tomioka K; Motohisa J Nanotechnology; 2024 Feb; 35(19):. PubMed ID: 38306695 [TBL] [Abstract][Full Text] [Related]
16. Growth and characterization of self-assembled InAs/InP quantum dot structures. Barik S; Tan HH; Wong-Leung J; Jagadish C J Nanosci Nanotechnol; 2010 Mar; 10(3):1525-36. PubMed ID: 20355541 [TBL] [Abstract][Full Text] [Related]
17. InGaAs quantum dots grown by molecular beam epitaxy for light emission on Si substrates. Bru-Chevallier C; El Akra A; Pelloux-Gervais D; Dumont H; Canut B; Chauvin N; Regreny P; Gendry M; Patriarche G; Jancu JM; Even J; Noe P; Calvo V; Salem B J Nanosci Nanotechnol; 2011 Oct; 11(10):9153-9. PubMed ID: 22400316 [TBL] [Abstract][Full Text] [Related]
18. Droplet epitaxy of InGaN quantum dots on Si (111) by plasma-assisted molecular beam epitaxy. Nurzal N; Hsu TY; Susanto I; Yu IS Discov Nano; 2023 Apr; 18(1):60. PubMed ID: 37382746 [TBL] [Abstract][Full Text] [Related]
19. Optimization of MBE Growth Conditions of In Gutowski P; Sankowska I; Słupiński T; Pierścińska D; Pierściński K; Kuźmicz A; Gołaszewska-Malec K; Bugajski M Materials (Basel); 2019 May; 12(10):. PubMed ID: 31108890 [TBL] [Abstract][Full Text] [Related]
20. Formation of mid-infrared emissive InAs quantum dots on a graded InxGa1-xAs/InP matrix with a more uniform size and higher density under safer growth conditions. Yin Z; Tang X; Sentosa D; Zhao J Nanotechnology; 2006 Mar; 17(6):1646-50. PubMed ID: 26558572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]