These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 34732046)
1. Understanding of the Mechanism Enables Controllable Chemical Prelithiation of Anode Materials for Lithium-Ion Batteries. Yue H; Zhang S; Feng T; Chen C; Zhou H; Xu Z; Wu M ACS Appl Mater Interfaces; 2021 Nov; 13(45):53996-54004. PubMed ID: 34732046 [TBL] [Abstract][Full Text] [Related]
2. Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries. Zhang X; Qu H; Ji W; Zheng D; Ding T; Abegglen C; Qiu D; Qu D ACS Appl Mater Interfaces; 2020 Mar; 12(10):11589-11599. PubMed ID: 32056422 [TBL] [Abstract][Full Text] [Related]
3. Ambient-Air Stable Lithiated Anode for Rechargeable Li-Ion Batteries with High Energy Density. Cao Z; Xu P; Zhai H; Du S; Mandal J; Dontigny M; Zaghib K; Yang Y Nano Lett; 2016 Nov; 16(11):7235-7240. PubMed ID: 27696883 [TBL] [Abstract][Full Text] [Related]
4. Regulating the Solvation Structure of Li He W; Xu H; Chen Z; Long J; Zhang J; Jiang J; Dou H; Zhang X Nanomicro Lett; 2023 Apr; 15(1):107. PubMed ID: 37071270 [TBL] [Abstract][Full Text] [Related]
5. Prelithiation: A Crucial Strategy for Boosting the Practical Application of Next-Generation Lithium Ion Battery. Wang F; Wang B; Li J; Wang B; Zhou Y; Wang D; Liu H; Dou S ACS Nano; 2021 Feb; 15(2):2197-2218. PubMed ID: 33570903 [TBL] [Abstract][Full Text] [Related]
6. Weakly Solvating Solution Enables Chemical Prelithiation of Graphite-SiO Choi J; Jeong H; Jang J; Jeon AR; Kang I; Kwon M; Hong J; Lee M J Am Chem Soc; 2021 Jun; 143(24):9169-9176. PubMed ID: 34111352 [TBL] [Abstract][Full Text] [Related]
7. In Situ Mesopore Formation in SiO Gong S; Lee Y; Choi J; Lee M; Chung KY; Jung HG; Jeong S; Kim HS Small; 2023 Apr; 19(16):e2206238. PubMed ID: 36617520 [TBL] [Abstract][Full Text] [Related]
8. Interphase Engineering Enhanced Electro-chemical Stability of Prelithiated Anode. Xu S; Fang Q; Wu J; Weng S; Li X; Liu Q; Wang Q; Yu X; Chen L; Li Y; Wang Z; Wang X Small; 2024 Jan; 20(2):e2305639. PubMed ID: 37658504 [TBL] [Abstract][Full Text] [Related]
10. A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries. Liu Z; Ma S; Mu X; Li R; Yin G; Zuo P ACS Appl Mater Interfaces; 2021 Mar; 13(10):11985-11994. PubMed ID: 33683090 [TBL] [Abstract][Full Text] [Related]
11. A Prelithiation Separator for Compensating the Initial Capacity Loss of Lithium-Ion Batteries. Rao Z; Wu J; He B; Chen W; Wang H; Fu Q; Huang Y ACS Appl Mater Interfaces; 2021 Aug; 13(32):38194-38201. PubMed ID: 34342445 [TBL] [Abstract][Full Text] [Related]
12. Molecularly Tailored Lithium-Arene Complex Enables Chemical Prelithiation of High-Capacity Lithium-Ion Battery Anodes. Jang J; Kang I; Choi J; Jeong H; Yi KW; Hong J; Lee M Angew Chem Int Ed Engl; 2020 Aug; 59(34):14473-14480. PubMed ID: 32400120 [TBL] [Abstract][Full Text] [Related]
13. Controlled Prelithiation of SnO Li F; Wang G; Zheng D; Zhang X; Abegglen CJ; Qu H; Qu D ACS Appl Mater Interfaces; 2020 Apr; 12(17):19423-19430. PubMed ID: 32264670 [TBL] [Abstract][Full Text] [Related]
14. Yang Y; Wang J; Kim SC; Zhang W; Peng Y; Zhang P; Vilá RA; Ma Y; Jeong YK; Cui Y Nano Lett; 2023 Jun; 23(11):5042-5047. PubMed ID: 37236151 [TBL] [Abstract][Full Text] [Related]
15. In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes. Sun Y; Lee HW; Zheng G; Seh ZW; Sun J; Li Y; Cui Y Nano Lett; 2016 Feb; 16(2):1497-501. PubMed ID: 26784146 [TBL] [Abstract][Full Text] [Related]
16. Focusing on the Subsequent Coulombic Efficiencies of SiO Sun Q; Li J; Hao C; Ci L ACS Appl Mater Interfaces; 2022 Mar; 14(12):14284-14292. PubMed ID: 35298133 [TBL] [Abstract][Full Text] [Related]
17. Lithiophilic Chemistry Facilitated Ultrathin Lithium for Scalable Prelithiation. Wang K; Yang C; Yuan R; Xu F; Zhang Y; Ding T; Yu M; Xu X; Long Y; Wu Y; Li L; Li X; Wu H Nano Lett; 2024 Feb; 24(6):2094-2101. PubMed ID: 38315573 [TBL] [Abstract][Full Text] [Related]
18. Chemically Prelithiated Hard-Carbon Anode for High Power and High Capacity Li-Ion Batteries. Shen Y; Qian J; Yang H; Zhong F; Ai X Small; 2020 Feb; 16(7):e1907602. PubMed ID: 31990451 [TBL] [Abstract][Full Text] [Related]
19. Prelithiation Bridges the Gap for Developing Next-Generation Lithium-Ion Batteries/Capacitors. Li F; Cao Y; Wu W; Wang G; Qu D Small Methods; 2022 Jul; 6(7):e2200411. PubMed ID: 35680608 [TBL] [Abstract][Full Text] [Related]
20. Electrocatalytic Decomposition of Lithium Oxalate-Based Composite Microspheres as a Prelithiation Additive in Lithium-Ion Batteries. Liu J; Lin J; Yin Z; Tong Z; Liu J; Wang Z; Zhou Y; Li J Molecules; 2024 Jun; 29(13):. PubMed ID: 38998928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]