These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 34732383)
1. Impact of formulation on the quality and stability of freeze-dried nanoparticles. Luo WC; O'Reilly Beringhs A; Kim R; Zhang W; Patel SM; Bogner RH; Lu X Eur J Pharm Biopharm; 2021 Dec; 169():256-267. PubMed ID: 34732383 [TBL] [Abstract][Full Text] [Related]
2. Impact of controlled ice nucleation and lyoprotectants on nanoparticle stability during Freeze-drying and upon storage. Luo WC; Zhang W; Kim R; Chong H; Patel SM; Bogner RH; Lu X Int J Pharm; 2023 Jun; 641():123084. PubMed ID: 37245738 [TBL] [Abstract][Full Text] [Related]
3. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Anhorn MG; Mahler HC; Langer K Int J Pharm; 2008 Nov; 363(1-2):162-9. PubMed ID: 18672043 [TBL] [Abstract][Full Text] [Related]
4. Freeze drying of nanosuspensions, 2: the role of the critical formulation temperature on stability of drug nanosuspensions and its practical implication on process design. Beirowski J; Inghelbrecht S; Arien A; Gieseler H J Pharm Sci; 2011 Oct; 100(10):4471-81. PubMed ID: 21607957 [TBL] [Abstract][Full Text] [Related]
5. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants. Cheow WS; Ng ML; Kho K; Hadinoto K Int J Pharm; 2011 Feb; 404(1-2):289-300. PubMed ID: 21093560 [TBL] [Abstract][Full Text] [Related]
6. Impact of fast and conservative freeze-drying on product quality of protein-mannitol-sucrose-glycerol lyophilizates. Horn J; Schanda J; Friess W Eur J Pharm Biopharm; 2018 Jun; 127():342-354. PubMed ID: 29522899 [TBL] [Abstract][Full Text] [Related]
7. Devitrification of lyoprotectants: A critical determinant for bacteriophages inactivation in freeze-drying and storage. Zheng H Food Res Int; 2023 Nov; 173(Pt 1):113307. PubMed ID: 37803616 [TBL] [Abstract][Full Text] [Related]
8. Freeze-dried nanocrystal dispersion of novel deuterated pyrazoloquinolinone ligand (DK-I-56-1): Process parameters and lyoprotectant selection through the stability study. Mitrović JR; Bjelošević Žiberna M; Vukadinović A; Knutson DE; Sharmin D; Kremenović A; Ahlin Grabnar P; Planinšek O; Lunter D; Cook JM; Savić MM; Savić SD Eur J Pharm Sci; 2023 Oct; 189():106557. PubMed ID: 37544333 [TBL] [Abstract][Full Text] [Related]
9. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System. Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647 [TBL] [Abstract][Full Text] [Related]
10. A pilot study of freeze drying of poly(epsilon-caprolactone) nanocapsules stabilized by poly(vinyl alcohol): formulation and process optimization. Abdelwahed W; Degobert G; Fessi H Int J Pharm; 2006 Feb; 309(1-2):178-88. PubMed ID: 16326053 [TBL] [Abstract][Full Text] [Related]
11. Tableting behavior of freeze and spray-dried excipients in pharmaceutical formulations. Madi C; Hsein H; Busignies V; Tchoreloff P; Mazel V Int J Pharm; 2024 May; 656():124059. PubMed ID: 38552753 [TBL] [Abstract][Full Text] [Related]
12. On the use of tert-butanol/water cosolvent systems in production and freeze-drying of poly-ε-caprolactone nanoparticles. Zelenková T; Barresi AA; Fissore D J Pharm Sci; 2015 Jan; 104(1):178-90. PubMed ID: 25421731 [TBL] [Abstract][Full Text] [Related]
13. Freeze-dried nifedipine-lipid nanoparticles with long-term nano-dispersion stability after reconstitution. Ohshima H; Miyagishima A; Kurita T; Makino Y; Iwao Y; Sonobe T; Itai S Int J Pharm; 2009 Jul; 377(1-2):180-4. PubMed ID: 19446623 [TBL] [Abstract][Full Text] [Related]
14. Development of Robust Freeze-Drying Process for Long-Term Stability of rVSV-SARS-CoV-2 Vaccine. Khan MDFH; Youssef M; Nesdoly S; Kamen AA Viruses; 2024 Jun; 16(6):. PubMed ID: 38932234 [TBL] [Abstract][Full Text] [Related]
16. A Comparison of Controlled Ice Nucleation Techniques for Freeze-Drying of a Therapeutic Antibody. Gitter JH; Geidobler R; Presser I; Winter G J Pharm Sci; 2018 Nov; 107(11):2748-2754. PubMed ID: 30055225 [TBL] [Abstract][Full Text] [Related]
17. Size control in production and freeze-drying of poly-ε-caprolactone nanoparticles. Zelenková T; Fissore D; Marchisio DL; Barresi AA J Pharm Sci; 2014 Jun; 103(6):1839-50. PubMed ID: 24737658 [TBL] [Abstract][Full Text] [Related]
18. Trehalose is not a universal solution for solid lipid nanoparticles freeze-drying. Doktorovova S; Shegokar R; Fernandes L; Martins-Lopes P; Silva AM; Müller RH; Souto EB Pharm Dev Technol; 2014 Dec; 19(8):922-9. PubMed ID: 24099511 [TBL] [Abstract][Full Text] [Related]
19. Co-encapsulation of lyoprotectants improves the stability of protein-loaded PLGA nanoparticles upon lyophilization. Fonte P; Araújo F; Seabra V; Reis S; van de Weert M; Sarmento B Int J Pharm; 2015 Dec; 496(2):850-62. PubMed ID: 26474964 [TBL] [Abstract][Full Text] [Related]
20. Naked plasmid DNA formulation: effect of different disaccharides on stability after lyophilisation. Quaak SG; Haanen JB; Beijnen JH; Nuijen B AAPS PharmSciTech; 2010 Mar; 11(1):344-50. PubMed ID: 20204715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]