These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 34732590)

  • 1. Machine Learning Prediction of the Three Main Input Parameters of a Simplified Physiologically Based Pharmacokinetic Model Subsequently Used to Generate Time-Dependent Plasma Concentration Data in Humans after Oral Doses of 212 Disparate Chemicals.
    Kamiya Y; Handa K; Miura T; Ohori J; Kato A; Shimizu M; Kitajima M; Yamazaki H
    Biol Pharm Bull; 2022 Jan; 45(1):124-128. PubMed ID: 34732590
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Kamiya Y; Handa K; Miura T; Yanagi M; Shigeta K; Hina S; Shimizu M; Kitajima M; Shono F; Funatsu K; Yamazaki H
    Chem Res Toxicol; 2021 Feb; 34(2):507-513. PubMed ID: 33433197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Updated in Silico Prediction Methods for Fractions Absorbed and Key Input Parameters of 355 Disparate Chemicals for Physiologically Based Pharmacokinetic Models for Time-Dependent Plasma Concentrations after Virtual Oral Doses in Humans.
    Adachi K; Shimizu M; Yamazaki H
    Biol Pharm Bull; 2022 Dec; 45(12):1812-1817. PubMed ID: 36171106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Updated
    Kamiya Y; Handa K; Miura T; Ohori J; Shimizu M; Kitajima M; Shono F; Funatsu K; Yamazaki H
    Chem Res Toxicol; 2021 Oct; 34(10):2180-2183. PubMed ID: 34586804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Updated in silico prediction methods for fractions absorbed and absorption rate constants of 372 disparate chemicals for use in physiologically based pharmacokinetic models for estimating internal concentrations in rats.
    Adachi K; Shimizu M; Yamazaki H
    J Toxicol Sci; 2022; 47(11):453-456. PubMed ID: 36328535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiologically Based Pharmacokinetic Models Predicting Renal and Hepatic Concentrations of Industrial Chemicals after Virtual Oral Doses in Rats.
    Kamiya Y; Otsuka S; Miura T; Yoshizawa M; Nakano A; Iwasaki M; Kobayashi Y; Shimizu M; Kitajima M; Shono F; Funatsu K; Yamazaki H
    Chem Res Toxicol; 2020 Jul; 33(7):1736-1751. PubMed ID: 32500706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liver and Plasma Concentrations of Food Chemicals after Virtual Oral Doses Extrapolated Using in Silico Estimated Input Pharmacokinetic Parameters to Confirm Reported Liver Toxicity in Rats.
    Adachi K; Nakano H; Sato T; Shimizu M; Yamazaki H
    Biol Pharm Bull; 2023 Aug; 46(8):1133-1140. PubMed ID: 37316265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma and Hepatic Concentrations of Chemicals after Virtual Oral Administrations Extrapolated Using Rat Plasma Data and Simple Physiologically Based Pharmacokinetic Models.
    Kamiya Y; Otsuka S; Miura T; Takaku H; Yamada R; Nakazato M; Nakamura H; Mizuno S; Shono F; Funatsu K; Yamazaki H
    Chem Res Toxicol; 2019 Jan; 32(1):211-218. PubMed ID: 30511563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeled Rat Hepatic and Plasma Concentrations of Chemicals after Virtual Administrations Using Two Sets of in Silico Liver-to-Plasma Partition Coefficients.
    Adachi K; Utsumi M; Sato T; Nakano H; Shimizu M; Yamazaki H
    Biol Pharm Bull; 2023 Sep; 46(9):1316-1323. PubMed ID: 37380443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extrapolation of Hepatic Concentrations of Industrial Chemicals Using Pharmacokinetic Models to Predict Hepatotoxicity.
    Yamazaki H; Kamiya Y
    Toxicol Res; 2019 Oct; 35(4):295-301. PubMed ID: 31636840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different Hepatic Concentrations of Bromobenzene, 1,2-Dibromobenzene, and 1,4-Dibromobenzene in Humanized-Liver Mice Predicted Using Simplified Physiologically Based Pharmacokinetic Models as Putative Markers of Toxicological Potential.
    Miura T; Shimizu M; Uehara S; Yoshizawa M; Nakano A; Yanagi M; Kamiya Y; Murayama N; Suemizu H; Yamazaki H
    Chem Res Toxicol; 2020 Dec; 33(12):3048-3053. PubMed ID: 33283517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association with polymorphic marmoset cytochrome P450 2C19 of in vivo hepatic clearances of chirally separated R-omeprazole and S-warfarin using individual marmoset physiologically based pharmacokinetic models.
    Kusama T; Toda A; Shimizu M; Uehara S; Inoue T; Uno Y; Utoh M; Sasaki E; Yamazaki H
    Xenobiotica; 2018 Oct; 48(10):1072-1077. PubMed ID: 29034770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis.
    Peters SA
    Clin Pharmacokinet; 2008; 47(4):261-75. PubMed ID: 18336055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma, liver, and kidney exposures in rats after oral doses of industrial chemicals predicted using physiologically based pharmacokinetic models: A case study of perfluorooctane sulfonic acid.
    Kamiya Y; Yanagi M; Hina S; Shigeta K; Miura T; Yamazaki H
    J Toxicol Sci; 2020; 45(12):763-767. PubMed ID: 33268676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning and artificial intelligence in physiologically based pharmacokinetic modeling.
    Chou WC; Lin Z
    Toxicol Sci; 2023 Jan; 191(1):1-14. PubMed ID: 36156156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma Concentration Profiles for Hepatotoxic Pyrrolizidine Alkaloid Senkirkine in Humans Extrapolated from Rat Data Sets Using a Simplified Physiologically Based Pharmacokinetic Model.
    Kamiya Y; Miura T; Kato A; Murayama N; Shimizu M; Yamazaki H
    Drug Metab Bioanal Lett; 2022; 15(1):64-69. PubMed ID: 34931973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-Based Analysis of Biopharmaceutic Experiments To Improve Mechanistic Oral Absorption Modeling: An Integrated in Vitro in Vivo Extrapolation Perspective Using Ketoconazole as a Model Drug.
    Pathak SM; Ruff A; Kostewicz ES; Patel N; Turner DB; Jamei M
    Mol Pharm; 2017 Dec; 14(12):4305-4320. PubMed ID: 28771009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PHRMA CPCDC initiative on predictive models of human pharmacokinetics, part 5: prediction of plasma concentration-time profiles in human by using the physiologically-based pharmacokinetic modeling approach.
    Poulin P; Jones RD; Jones HM; Gibson CR; Rowland M; Chien JY; Ring BJ; Adkison KK; Ku MS; He H; Vuppugalla R; Marathe P; Fischer V; Dutta S; Sinha VK; Björnsson T; Lavé T; Yates JW
    J Pharm Sci; 2011 Oct; 100(10):4127-57. PubMed ID: 21541937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Oral Pharmacokinetics Using a Combination of In Silico Descriptors and In Vitro ADME Properties.
    Kosugi Y; Hosea N
    Mol Pharm; 2021 Mar; 18(3):1071-1079. PubMed ID: 33512165
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Li X; Jusko WJ
    Drug Metab Dispos; 2022 Oct; ():. PubMed ID: 36195337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.