These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34732760)

  • 1. Feedback between bottom-up and top-down control of stream biofilm mediated through eutrophication effects on grazer growth.
    Iannino A; Fink P; Weitere M
    Sci Rep; 2021 Nov; 11(1):21621. PubMed ID: 34732760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resource-dependent foraging behaviour of grazers enhances effects of nutrient enrichment on algal biomass.
    Iannino A; Fink P; Vosshage ATL; Weitere M
    Oecologia; 2023 Feb; 201(2):479-488. PubMed ID: 36607451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grazers, producer stoichiometry, and the light : nutrient hypothesis revisited.
    Hall SR; Leibold MA; Lytle DA; Smith VH
    Ecology; 2007 May; 88(5):1142-52. PubMed ID: 17536401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confounding factors in algal phosphorus limitation experiments.
    Beck WS; Hall EK
    PLoS One; 2018; 13(10):e0205684. PubMed ID: 30335857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gastropod grazers and nutrients, but not light, interact in determining periphytic algal diversity.
    Liess A; Kahlert M
    Oecologia; 2007 May; 152(1):101-11. PubMed ID: 17285319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can nutrient pathways and biotic interactions control eutrophication in riverine ecosystems? Evidence from a model driven mesocosm experiment.
    Jäger CG; Hagemann J; Borchardt D
    Water Res; 2017 May; 115():162-171. PubMed ID: 28279937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of short-term sediment nutrient enrichment and grazer (Neritina Reclivata) removal on sediment microalgae in a shallow eutrophic estuary (Alabama, USA).
    Cebrian J; Stutes AL; Phipps S; Stutes JP; Christiaen B; Pennock JR
    Rev Biol Trop; 2012 Dec; 60(4):1687-706. PubMed ID: 23342522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of light availability and herbivory on algal responses to nutrient enrichment in a riparian wetland, Alaska.
    Rober AR; Stevenson RJ; Wyatt KH
    J Phycol; 2015 Jun; 51(3):528-35. PubMed ID: 26986667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bayesian Modeling of the Effects of Extreme Flooding and the Grazer Community on Algal Biomass Dynamics in a Monsoonal Taiwan Stream.
    Chiu MC; Kuo MH; Chang HY; Lin HJ
    Microb Ecol; 2016 Aug; 72(2):372-80. PubMed ID: 27273089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How green is my river? A new paradigm of eutrophication in rivers.
    Hilton J; O'Hare M; Bowes MJ; Jones JI
    Sci Total Environ; 2006 Jul; 365(1-3):66-83. PubMed ID: 16643991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Herbivorous snails can increase water clarity by stimulating growth of benthic algae.
    Zhang X; Taylor WD; Rudstam LG
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24698-24707. PubMed ID: 28913753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grazer control of nutrient availability in the periphyton.
    McCormick PV; Stevenson RJ
    Oecologia; 1991 Apr; 86(2):287-291. PubMed ID: 28313212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of grazing and nutrient supply on periphyton associated bacteria.
    Haglund AL; Hillebrand H
    FEMS Microbiol Ecol; 2005 Mar; 52(1):31-41. PubMed ID: 16329890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent.
    Gao F; Yang ZH; Li C; Zeng GM; Ma DH; Zhou L
    Bioresour Technol; 2015 Mar; 179():8-12. PubMed ID: 25514396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Episodic loadings of phosphorus influence growth and composition of benthic algae communities in artificial stream mesocosms.
    Pearce NJT; Thomas KE; Lavoie I; Chambers PA; Yates AG
    Water Res; 2020 Oct; 185():116139. PubMed ID: 32823192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abiotic autumnal organic matter deposition and grazing disturbance effects on epilithic biofilm succession.
    Lang JM; McEwan RW; Benbow ME
    FEMS Microbiol Ecol; 2015 Jun; 91(6):. PubMed ID: 26038240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Top-down versus bottom-up: Grazing and upwelling regime alter patterns of primary productivity in a warm-temperate system.
    Gilson AR; McQuaid C
    Ecology; 2023 Dec; 104(12):e4180. PubMed ID: 37784259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity.
    Ye Y; Huang Y; Xia A; Fu Q; Liao Q; Zeng W; Zheng Y; Zhu X
    Bioresour Technol; 2018 Dec; 270():80-87. PubMed ID: 30212777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecological stoichiometry of indirect grazer effects on periphyton nutrient content.
    Hillebrand H; Frost P; Liess A
    Oecologia; 2008 Mar; 155(3):619-30. PubMed ID: 18064492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How do grazers affect periphyton heterogeneity in streams?
    Alvarez M; Peckarsky BL
    Oecologia; 2005 Feb; 142(4):576-87. PubMed ID: 15688216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.