These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34732832)

  • 1. n-Butanol production by Rhodopseudomonas palustris TIE-1.
    Bai W; Ranaivoarisoa TO; Singh R; Rengasamy K; Bose A
    Commun Biol; 2021 Nov; 4(1):1257. PubMed ID: 34732832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of RuBisCO form I and II genes in
    Ranaivoarisoa TO; Bai W; Karthikeyan R; Steele H; Silberman M; Olabode J; Conners E; Gallagher B; Bose A
    Appl Environ Microbiol; 2024 Sep; 90(9):e0143824. PubMed ID: 39162566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards sustainable bioplastic production using the photoautotrophic bacterium Rhodopseudomonas palustris TIE-1.
    Ranaivoarisoa TO; Singh R; Rengasamy K; Guzman MS; Bose A
    J Ind Microbiol Biotechnol; 2019 Oct; 46(9-10):1401-1417. PubMed ID: 30927110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calvin cycle flux, pathway constraints, and substrate oxidation state together determine the H2 biofuel yield in photoheterotrophic bacteria.
    McKinlay JB; Harwood CS
    mBio; 2011; 2(2):. PubMed ID: 21427286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phototrophic extracellular electron uptake is linked to carbon dioxide fixation in the bacterium Rhodopseudomonas palustris.
    Guzman MS; Rengasamy K; Binkley MM; Jones C; Ranaivoarisoa TO; Singh R; Fike DA; Meacham JM; Bose A
    Nat Commun; 2019 Mar; 10(1):1355. PubMed ID: 30902976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentative Escherichia coli makes a substantial contribution to H2 production in coculture with phototrophic Rhodopseudomonas palustris.
    Sangani AA; McCully AL; LaSarre B; McKinlay JB
    FEMS Microbiol Lett; 2019 Jul; 366(14):. PubMed ID: 31329226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An insoluble iron complex coated cathode enhances direct electron uptake by Rhodopseudomonas palustris TIE-1.
    Rengasamy K; Ranaivoarisoa T; Singh R; Bose A
    Bioelectrochemistry; 2018 Aug; 122():164-173. PubMed ID: 29655035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Redundancy in Iron and Manganese Transport in the Metabolically Versatile Bacterium Rhodopseudomonas palustris TIE-1.
    Singh R; Ranaivoarisoa TO; Gupta D; Bai W; Bose A
    Appl Environ Microbiol; 2020 Aug; 86(16):. PubMed ID: 32503905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the Interplay of Rubisco and Nitrogenase Enzymes in Anaerobic-Photoheterotrophically Grown Rhodopseudomonas palustris CGA009 through a Genome-Scale Metabolic and Expression Model.
    Chowdhury NB; Alsiyabi A; Saha R
    Microbiol Spectr; 2022 Aug; 10(4):e0146322. PubMed ID: 35730964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving bioplastic production by
    Ranaivoarisoa TO; Bai W; Rengasamy K; Steele H; Silberman M; Olabode J; Bose A
    bioRxiv; 2023 May; ():. PubMed ID: 37292853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production.
    Anfelt J; Kaczmarzyk D; Shabestary K; Renberg B; Rockberg J; Nielsen J; Uhlén M; Hudson EP
    Microb Cell Fact; 2015 Oct; 14():167. PubMed ID: 26474754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Rhodopseudomonas palustris for squalene production.
    Xu W; Chai C; Shao L; Yao J; Wang Y
    J Ind Microbiol Biotechnol; 2016 May; 43(5):719-25. PubMed ID: 26886756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Energy and Electron Availability on
    Zheng Y; Harwood CS
    Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoferrotrophs Produce a PioAB Electron Conduit for Extracellular Electron Uptake.
    Gupta D; Sutherland MC; Rengasamy K; Meacham JM; Kranz RG; Bose A
    mBio; 2019 Nov; 10(6):. PubMed ID: 31690680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose.
    Gaida SM; Liedtke A; Jentges AH; Engels B; Jennewein S
    Microb Cell Fact; 2016 Jan; 15():6. PubMed ID: 26758196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the molecular response of Pseudomonas putida KT2440 to the next-generation biofuel n-butanol.
    Simon O; Klebensberger J; Mükschel B; Klaiber I; Graf N; Altenbuchner J; Huber A; Hauer B; Pfannstiel J
    J Proteomics; 2015 Jun; 122():11-25. PubMed ID: 25829261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris.
    Huang JJ; Heiniger EK; McKinlay JB; Harwood CS
    Appl Environ Microbiol; 2010 Dec; 76(23):7717-22. PubMed ID: 20889777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic engineering of non-native hosts for 1-butanol production and its challenges: a review.
    Nawab S; Wang N; Ma X; Huo YX
    Microb Cell Fact; 2020 Mar; 19(1):79. PubMed ID: 32220254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current advances in engineering cyanobacteria and their applications for photosynthetic butanol production.
    Liu X; Xie H; Roussou S; Lindblad P
    Curr Opin Biotechnol; 2022 Feb; 73():143-150. PubMed ID: 34411807
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.