These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 34733307)
1. A Bifunctional Synthetic Peptide With Antimicrobial and Plant Elicitation Properties That Protect Tomato Plants From Bacterial and Fungal Infections. Montesinos L; Gascón B; Ruz L; Badosa E; Planas M; Feliu L; Montesinos E Front Plant Sci; 2021; 12():756357. PubMed ID: 34733307 [TBL] [Abstract][Full Text] [Related]
2. Peptide Conjugates Derived from flg15, Pep13, and PIP1 That Are Active against Plant-Pathogenic Bacteria and Trigger Plant Defense Responses. Oliveras À; Camó C; Caravaca-Fuentes P; Moll L; Riesco-Llach G; Gil-Caballero S; Badosa E; Bonaterra A; Montesinos E; Feliu L; Planas M Appl Environ Microbiol; 2022 Jun; 88(12):e0057422. PubMed ID: 35638842 [TBL] [Abstract][Full Text] [Related]
3. Baró A; Saldarelli P; Saponari M; Montesinos E; Montesinos L Front Plant Sci; 2022; 13():1061463. PubMed ID: 36531347 [TBL] [Abstract][Full Text] [Related]
4. Induction of Defense Responses and Protection of Almond Plants Against Moll L; Baró A; Montesinos L; Badosa E; Bonaterra A; Montesinos E Phytopathology; 2022 Sep; 112(9):1907-1916. PubMed ID: 35384723 [No Abstract] [Full Text] [Related]
5. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens. Wang X; Basnayake BM; Zhang H; Li G; Li W; Virk N; Mengiste T; Song F Mol Plant Microbe Interact; 2009 Oct; 22(10):1227-38. PubMed ID: 19737096 [TBL] [Abstract][Full Text] [Related]
6. Involvement of the pepper antimicrobial protein CaAMP1 gene in broad spectrum disease resistance. Lee SC; Hwang IS; Choi HW; Hwang BK Plant Physiol; 2008 Oct; 148(2):1004-20. PubMed ID: 18676663 [TBL] [Abstract][Full Text] [Related]
7. Production of BP178, a derivative of the synthetic antibacterial peptide BP100, in the rice seed endosperm. Montesinos L; Bundó M; Badosa E; San Segundo B; Coca M; Montesinos E BMC Plant Biol; 2017 Mar; 17(1):63. PubMed ID: 28292258 [TBL] [Abstract][Full Text] [Related]
8. Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria. Herrera Diaz A; Kovacs I; Lindermayr C PLoS One; 2016; 11(10):e0164097. PubMed ID: 27706237 [TBL] [Abstract][Full Text] [Related]
9. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria. Wu T; Tang D; Chen W; Huang H; Wang R; Chen Y Gene; 2013 Sep; 527(1):235-42. PubMed ID: 23820081 [TBL] [Abstract][Full Text] [Related]
10. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana. Duan Y; Jiang Y; Ye S; Karim A; Ling Z; He Y; Yang S; Luo K Plant Cell Rep; 2015 May; 34(5):831-41. PubMed ID: 25627252 [TBL] [Abstract][Full Text] [Related]
11. Arabidopsis AtERF15 positively regulates immunity against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea. Zhang H; Huang L; Dai Y; Liu S; Hong Y; Tian L; Huang L; Cao Z; Li D; Song F Front Plant Sci; 2015; 6():686. PubMed ID: 26388886 [TBL] [Abstract][Full Text] [Related]
12. Tomato SlERF.A1, SlERF.B4, SlERF.C3 and SlERF.A3, Members of B3 Group of ERF Family, Are Required for Resistance to Ouyang Z; Liu S; Huang L; Hong Y; Li X; Huang L; Zhang Y; Zhang H; Li D; Song F Front Plant Sci; 2016; 7():1964. PubMed ID: 28083004 [TBL] [Abstract][Full Text] [Related]
13. Arabidopsis AtERF014 acts as a dual regulator that differentially modulates immunity against Pseudomonas syringae pv. tomato and Botrytis cinerea. Zhang H; Hong Y; Huang L; Li D; Song F Sci Rep; 2016 Jul; 6():30251. PubMed ID: 27445230 [TBL] [Abstract][Full Text] [Related]
14. Improvement of the efficacy of linear undecapeptides against plant-pathogenic bacteria by incorporation of D-amino acids. Güell I; Cabrefiga J; Badosa E; Ferre R; Talleda M; Bardají E; Planas M; Feliu L; Montesinos E Appl Environ Microbiol; 2011 Apr; 77(8):2667-75. PubMed ID: 21335383 [TBL] [Abstract][Full Text] [Related]
15. Pseudozyma aphidis Induces Salicylic-Acid-Independent Resistance to Clavibacter michiganensis in Tomato Plants. Barda O; Shalev O; Alster S; Buxdorf K; Gafni A; Levy M Plant Dis; 2015 May; 99(5):621-626. PubMed ID: 30699688 [TBL] [Abstract][Full Text] [Related]
16. Arabidopsis adc-silenced line exhibits differential defense responses to Botrytis cinerea and Pseudomonas syringae infection. Chávez-Martínez AI; Ortega-Amaro MA; Torres M; Serrano M; Jiménez-Bremont JF Plant Physiol Biochem; 2020 Nov; 156():494-503. PubMed ID: 33049445 [TBL] [Abstract][Full Text] [Related]
17. Expression and Functional Roles of the Pepper Pathogen-Induced bZIP Transcription Factor CabZIP2 in Enhanced Disease Resistance to Bacterial Pathogen Infection. Lim CW; Baek W; Lim S; Han SW; Lee SC Mol Plant Microbe Interact; 2015 Jul; 28(7):825-33. PubMed ID: 25738319 [TBL] [Abstract][Full Text] [Related]
18. Requirement of the cytosolic interaction between PATHOGENESIS-RELATED PROTEIN10 and LEUCINE-RICH REPEAT PROTEIN1 for cell death and defense signaling in pepper. Choi DS; Hwang IS; Hwang BK Plant Cell; 2012 Apr; 24(4):1675-90. PubMed ID: 22492811 [TBL] [Abstract][Full Text] [Related]
19. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea. Wang L; Liu W; Wang Y Plant Sci; 2020 Apr; 293():110421. PubMed ID: 32081269 [TBL] [Abstract][Full Text] [Related]
20. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection. Veronese P; Chen X; Bluhm B; Salmeron J; Dietrich R; Mengiste T Plant J; 2004 Nov; 40(4):558-74. PubMed ID: 15500471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]