BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34733755)

  • 1. Optogenetic Stimulation of Primary Cardiomyocytes Expressing ChR2.
    Keshmiri Neghab H; Soheilifar MH; Saboury AA; Goliaei B; Hong J; Esmaeeli Djavid G
    J Lasers Med Sci; 2021; 12():e32. PubMed ID: 34733755
    [No Abstract]   [Full Text] [Related]  

  • 2. Coupling the Cardiac Voltage-Gated Sodium Channel to Channelrhodopsin-2 Generates Novel Optical Switches for Action Potential Studies.
    Vom Dahl C; Müller CE; Berisha X; Nagel G; Zimmer T
    Membranes (Basel); 2022 Sep; 12(10):. PubMed ID: 36295666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems.
    Ferenczi EA; Tan X; Huang CL
    Front Physiol; 2019; 10():1096. PubMed ID: 31572204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model.
    Williams JC; Xu J; Lu Z; Klimas A; Chen X; Ambrosi CM; Cohen IS; Entcheva E
    PLoS Comput Biol; 2013; 9(9):e1003220. PubMed ID: 24068903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: a simulation study.
    Karathanos TV; Bayer JD; Wang D; Boyle PM; Trayanova NA
    J Physiol; 2016 Dec; 594(23):6879-6891. PubMed ID: 26941055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of cardiac optogenetics by vitamin A.
    Keshmiri Neghab H; Goliaei B; Saboury AA; Esmaeeli Djavid G; Pornour M; Hong J; Grusch M
    Biofactors; 2019 Nov; 45(6):983-990. PubMed ID: 31509323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes.
    Björk S; Ojala EA; Nordström T; Ahola A; Liljeström M; Hyttinen J; Kankuri E; Mervaala E
    Front Physiol; 2017; 8():884. PubMed ID: 29163220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights.
    Williams JC; Entcheva E
    Biophys J; 2015 Apr; 108(8):1934-45. PubMed ID: 25902433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological Properties and Viability of Neonatal Rat Ventricular Myocyte Cultures with Inducible ChR2 Expression.
    Li Q; Ni RR; Hong H; Goh KY; Rossi M; Fast VG; Zhou L
    Sci Rep; 2017 May; 7(1):1531. PubMed ID: 28484220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic actuation in ChR2-transduced fibroblasts alter excitation-contraction coupling and mechano-electric feedback in coupled cardiomyocytes: a computational modeling study.
    Zhan H; Wang Z; Lin J; Yu Y; Xia L
    Math Biosci Eng; 2021 Sep; 18(6):8354-8373. PubMed ID: 34814303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo optogenetic activation of Na
    Uhelski ML; Bruce DJ; Séguéla P; Wilcox GL; Simone DA
    J Neurophysiol; 2017 Jun; 117(6):2218-2223. PubMed ID: 28298301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human pluripotent stem cell tools for cardiac optogenetics.
    Zhuge Y; Patlolla B; Ramakrishnan C; Beygui RE; Zarins CK; Deisseroth K; Kuhl E; Abilez OJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6171-4. PubMed ID: 25571406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins.
    Nussinovitch U; Shinnawi R; Gepstein L
    Cardiovasc Res; 2014 Apr; 102(1):176-87. PubMed ID: 24518144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromechanical Assessment of Optogenetically Modulated Cardiomyocyte Activity.
    Kopton RA; Buchmann C; Moss R; Kohl P; Peyronnet R; Schneider-Warme F
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32202521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No light without the dark: Perspectives and hindrances for translation of cardiac optogenetics.
    Richter C; Bruegmann T
    Prog Biophys Mol Biol; 2020 Aug; 154():39-50. PubMed ID: 31515056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac optogenetics.
    Abilez OJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1386-9. PubMed ID: 23366158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective optogenetic stimulation of fibroblasts enables quantification of hetero-cellular coupling to cardiomyocytes in a three-dimensional model of heart tissue.
    Funken M; Bruegmann T; Sasse P
    Europace; 2020 Oct; 22(10):1590-1599. PubMed ID: 32808019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systemic gene transfer enables optogenetic pacing of mouse hearts.
    Vogt CC; Bruegmann T; Malan D; Ottersbach A; Roell W; Fleischmann BK; Sasse P
    Cardiovasc Res; 2015 May; 106(2):338-43. PubMed ID: 25587047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining the ionic mechanisms of optogenetic control of vascular tone by channelrhodopsin-2.
    Rorsman NJG; Ta CM; Garnett H; Swietach P; Tammaro P
    Br J Pharmacol; 2018 Jun; 175(11):2028-2045. PubMed ID: 29486056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Holographic optogenetic stimulation with calcium imaging as an all optical tool for cardiac electrophysiology.
    Junge S; Schmieder F; Sasse P; Czarske J; Torres-Mapa ML; Heisterkamp A
    J Biophotonics; 2022 Jul; 15(7):e202100352. PubMed ID: 35397155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.