These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34733817)

  • 1. Structural Aspects of the Superionic Transition in AX
    Fossati PCM; Chartier A; Boulle A
    Front Chem; 2021; 9():723507. PubMed ID: 34733817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating finite-size effects in molecular dynamics simulations of ion diffusion, heat transport, and thermal motion in superionic materials.
    Grasselli F
    J Chem Phys; 2022 Apr; 156(13):134705. PubMed ID: 35395883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sublattice melting in binary superionic colloidal crystals.
    Lin Y; Olvera de la Cruz M
    Phys Rev E; 2020 Mar; 101(3-1):032603. PubMed ID: 32289975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superionic UO
    Zhang H; Wang X; Chremos A; Douglas JF
    J Chem Phys; 2019 May; 150(17):174506. PubMed ID: 31067868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of partial structures of melts of superionic AgI and CuI and non-superionic AgCl.
    Kawakita Y; Tahara S; Fujii H; Kohara S; Takeda S
    J Phys Condens Matter; 2007 Aug; 19(33):335201. PubMed ID: 21694124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutron powder diffraction and molecular dynamics study of superionic SrBr2.
    Hull S; Norberg ST; Eriksson SG; Mohn CE
    J Phys Condens Matter; 2013 Nov; 25(45):454205. PubMed ID: 24141005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A two-dimensional type I superionic conductor.
    Rettie AJE; Ding J; Zhou X; Johnson MJ; Malliakas CD; Osti NC; Chung DY; Osborn R; Delaire O; Rosenkranz S; Kanatzidis MG
    Nat Mater; 2021 Dec; 20(12):1683-1688. PubMed ID: 34294884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density functional theory calculations of UO2 oxidation: evolution of UO(2+x), U4O(9-y), U3O7, and U3O8.
    Andersson DA; Baldinozzi G; Desgranges L; Conradson DR; Conradson SD
    Inorg Chem; 2013 Mar; 52(5):2769-78. PubMed ID: 23406007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant Mechanocaloric Effects in Fluorite-Structured Superionic Materials.
    Cazorla C; Errandonea D
    Nano Lett; 2016 May; 16(5):3124-9. PubMed ID: 27070506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanosecond X-ray diffraction of shock-compressed superionic water ice.
    Millot M; Coppari F; Rygg JR; Correa Barrios A; Hamel S; Swift DC; Eggert JH
    Nature; 2019 May; 569(7755):251-255. PubMed ID: 31068720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The phase diagram of high-pressure superionic ice.
    Sun J; Clark BK; Torquato S; Car R
    Nat Commun; 2015 Aug; 6():8156. PubMed ID: 26315260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disappearance of the Superionic Phase Transition in Sub-5 nm Silver Iodide Nanoparticles.
    Yamamoto T; Kobayashi H; Kumara LSR; Sakata O; Nitta K; Uruga T; Kitagawa H
    Nano Lett; 2017 Sep; 17(9):5273-5276. PubMed ID: 28805393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloidal superionic conductors.
    Lin Y; Olvera de la Cruz M
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2300257120. PubMed ID: 37018200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swinging Symmetry, Multiple Structural Phase Transitions, and Versatile Physical Properties in RECuGa3 (RE = La-Nd, Sm-Gd).
    Subbarao U; Rayaprol S; Dally R; Graf MJ; Peter SC
    Inorg Chem; 2016 Jan; 55(2):666-75. PubMed ID: 26717270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction.
    Mannock DA; Collins MD; Kreichbaum M; Harper PE; Gruner SM; McElhaney RN
    Chem Phys Lipids; 2007 Jul; 148(1):26-50. PubMed ID: 17524381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational study on the superionic behaviour of ThO
    Ghosh PS; Arya A; Dey GK; Kuganathan N; Grimes RW
    Phys Chem Chem Phys; 2016 Nov; 18(46):31494-31504. PubMed ID: 27827487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two new colloidal crystal phases of lipid A-monophosphate: order-to-order transition in colloidal crystals.
    Faunce CA; Paradies HH
    J Chem Phys; 2009 Dec; 131(24):244708. PubMed ID: 20059100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superionic-Superionic Phase Transitions in Body-Centered Cubic H_{2}O Ice.
    Hernandez JA; Caracas R
    Phys Rev Lett; 2016 Sep; 117(13):135503. PubMed ID: 27715129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization model description of diffusion and structural relaxation in superionic crystalline UO
    Zhang H; Wang X; Douglas JF
    J Chem Phys; 2019 Aug; 151(7):071101. PubMed ID: 31438717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of order-disorder phase transitions and band gap evolution on the thermoelectric properties of AgCuS nanocrystals.
    Guin SN; Sanyal D; Biswas K
    Chem Sci; 2016 Jan; 7(1):534-543. PubMed ID: 29896345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.