BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34733843)

  • 21. Analyzing the characteristics of immune cell infiltration in lung adenocarcinoma via bioinformatics to predict the effect of immunotherapy.
    Liao Y; He D; Wen F
    Immunogenetics; 2021 Oct; 73(5):369-380. PubMed ID: 34302518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mutation-based gene set predicts survival benefit after immunotherapy across multiple cancers and reveals the immune response landscape.
    Long J; Wang D; Wang A; Chen P; Lin Y; Bian J; Yang X; Zheng M; Zhang H; Zheng Y; Sang X; Zhao H
    Genome Med; 2022 Feb; 14(1):20. PubMed ID: 35197093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of immune-related signatures of lung adenocarcinoma identified two distinct subtypes: implications for immune checkpoint blockade therapy.
    Wang Q; Li M; Yang M; Yang Y; Song F; Zhang W; Li X; Chen K
    Aging (Albany NY); 2020 Feb; 12(4):3312-3339. PubMed ID: 32091408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Association of
    Jia M; Yao L; Yang Q; Chi T
    Front Oncol; 2020; 10():168. PubMed ID: 32154170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Association of Survival and Immune-Related Biomarkers With Immunotherapy in Patients With Non-Small Cell Lung Cancer: A Meta-analysis and Individual Patient-Level Analysis.
    Yu Y; Zeng D; Ou Q; Liu S; Li A; Chen Y; Lin D; Gao Q; Zhou H; Liao W; Yao H
    JAMA Netw Open; 2019 Jul; 2(7):e196879. PubMed ID: 31290993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alteration in TET1 as potential biomarker for immune checkpoint blockade in multiple cancers.
    Wu HX; Chen YX; Wang ZX; Zhao Q; He MM; Wang YN; Wang F; Xu RH
    J Immunother Cancer; 2019 Oct; 7(1):264. PubMed ID: 31623662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Association of MUC16 Mutation With Response to Immune Checkpoint Inhibitors in Solid Tumors.
    Zhang L; Han X; Shi Y
    JAMA Netw Open; 2020 Aug; 3(8):e2013201. PubMed ID: 32845327
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immune landscape and a promising immune prognostic model associated with TP53 in early-stage lung adenocarcinoma.
    Wu C; Rao X; Lin W
    Cancer Med; 2021 Feb; 10(3):806-823. PubMed ID: 33314730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EPHA5 mutations predict survival after immunotherapy in lung adenocarcinoma.
    Chen Z; Chen J; Ren D; Zhang J; Yang Y; Zhang H; Mao B; Ma H
    Aging (Albany NY); 2020 Dec; 13(1):598-618. PubMed ID: 33288738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prognostic value of TP53 co-mutation status combined with EGFR mutation in patients with lung adenocarcinoma.
    Wang F; Zhao N; Gao G; Deng HB; Wang ZH; Deng LL; Yang Y; Lu C
    J Cancer Res Clin Oncol; 2020 Nov; 146(11):2851-2859. PubMed ID: 32743759
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycolysis Define Two Prognostic Subgroups of Lung Adenocarcinoma With Different Mutation Characteristics and Immune Infiltration Signatures.
    Huo C; Zhang MY; Li R; Liu TT; Li JP; Qu YQ
    Front Cell Dev Biol; 2021; 9():645482. PubMed ID: 34368114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new immune signature for survival prediction and immune checkpoint molecules in lung adenocarcinoma.
    Guo D; Wang M; Shen Z; Zhu J
    J Transl Med; 2020 Mar; 18(1):123. PubMed ID: 32143735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and validation of a robust immune-related prognostic signature in early-stage lung adenocarcinoma.
    Wu P; Zheng Y; Wang Y; Wang Y; Liang N
    J Transl Med; 2020 Oct; 18(1):380. PubMed ID: 33028329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predictive Value of the
    Pan YH; Zhang JX; Chen X; Liu F; Cao JZ; Chen Y; Chen W; Luo JH
    Front Immunol; 2021; 12():643282. PubMed ID: 34421886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Favorable Immune Microenvironment in Patients with EGFR and MAPK Co-Mutations.
    Yang W; Chen N; Li L; Chen X; Liu X; Zhang Y; Cui J
    Lung Cancer (Auckl); 2020; 11():59-71. PubMed ID: 32982525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impaired Cytolytic Activity and Loss of Clonal Neoantigens in Elderly Patients With Lung Adenocarcinoma.
    Gong Z; Jia Q; Chen J; Diao X; Gao J; Wang X; Zhu B
    J Thorac Oncol; 2019 May; 14(5):857-866. PubMed ID: 30768970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic and Immune Profiles of Solid Predominant Lung Adenocarcinoma Reveal Potential Immunotherapeutic Strategies.
    Dong ZY; Zhang C; Li YF; Su J; Xie Z; Liu SY; Yan LX; Chen ZH; Yang XN; Lin JT; Tu HY; Yang JJ; Zhou Q; Sun YL; Zhong WZ; Wu YL
    J Thorac Oncol; 2018 Jan; 13(1):85-96. PubMed ID: 29127022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GDPLichi: a DNA Damage Repair-Related Gene Classifier for Predicting Lung Adenocarcinoma Immune Checkpoint Inhibitors Response.
    Leng Y; Dang S; Yin F; Gao T; Xiao X; Zhang Y; Chen L; Qin C; Lai N; Zhan XY; Huang K; Luo C; Kang Y; Wang N; Li Y; Liang Y; Huang B
    Front Oncol; 2021; 11():733533. PubMed ID: 34970479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TOX correlates with prognosis, immune infiltration, and T cells exhaustion in lung adenocarcinoma.
    Guo L; Li X; Liu R; Chen Y; Ren C; Du S
    Cancer Med; 2020 Sep; 9(18):6694-6709. PubMed ID: 32700817
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification and validation of significant gene mutations to predict clinical benefit of immune checkpoint inhibitors in lung adenocarcinoma.
    Chen Y; Miao S; Zhao W
    Am J Transl Res; 2021; 13(3):1051-1063. PubMed ID: 33841639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.