These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34734281)

  • 1. Deep learning-based high-throughput phenotyping accelerates gene discovery for stomatal traits.
    Zhang W; Calla B; Thiruppathi D
    Plant Physiol; 2021 Nov; 187(3):1273-1275. PubMed ID: 34734281
    [No Abstract]   [Full Text] [Related]  

  • 2. Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum.
    Bheemanahalli R; Wang C; Bashir E; Chiluwal A; Pokharel M; Perumal R; Moghimi N; Ostmeyer T; Caragea D; Jagadish SVK
    Plant Physiol; 2021 Jul; 186(3):1562-1579. PubMed ID: 33856488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and utilization of genetic determinants of trait measurement errors in image-based, high-throughput phenotyping.
    Zhou Y; Kusmec A; Mirnezami SV; Attigala L; Srinivasan S; Jubery TZ; Schnable JC; Salas-Fernandez MG; Ganapathysubramanian B; Schnable PS
    Plant Cell; 2021 Aug; 33(8):2562-2582. PubMed ID: 34015121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand.
    Prado SA; Cabrera-Bosquet L; Grau A; Coupel-Ledru A; Millet EJ; Welcker C; Tardieu F
    Plant Cell Environ; 2018 Feb; 41(2):314-326. PubMed ID: 29044609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical topometry and machine learning to rapidly phenotype stomatal patterning traits for maize QTL mapping.
    Xie J; Fernandes SB; Mayfield-Jones D; Erice G; Choi M; E Lipka A; Leakey ADB
    Plant Physiol; 2021 Nov; 187(3):1462-1480. PubMed ID: 34618057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon isotope composition, water use efficiency, and drought sensitivity are controlled by a common genomic segment in maize.
    Avramova V; Meziane A; Bauer E; Blankenagel S; Eggels S; Gresset S; Grill E; Niculaes C; Ouzunova M; Poppenberger B; Presterl T; Rozhon W; Welcker C; Yang Z; Tardieu F; Schön CC
    Theor Appl Genet; 2019 Jan; 132(1):53-63. PubMed ID: 30244394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotyping stomatal closure by thermal imaging for GWAS and TWAS of water use efficiency-related genes.
    Pignon CP; Fernandes SB; Valluru R; Bandillo N; Lozano R; Buckler E; Gore MA; Long SP; Brown PJ; Leakey ADB
    Plant Physiol; 2021 Dec; 187(4):2544-2562. PubMed ID: 34618072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shared Genetic Control of Root System Architecture between
    Zheng Z; Hey S; Jubery T; Liu H; Yang Y; Coffey L; Miao C; Sigmon B; Schnable JC; Hochholdinger F; Ganapathysubramanian B; Schnable PS
    Plant Physiol; 2020 Feb; 182(2):977-991. PubMed ID: 31740504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic association of stomatal traits and yield in wheat grown in low rainfall environments.
    Shahinnia F; Le Roy J; Laborde B; Sznajder B; Kalambettu P; Mahjourimajd S; Tilbrook J; Fleury D
    BMC Plant Biol; 2016 Jul; 16(1):150. PubMed ID: 27378125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize.
    Zhan A; Schneider H; Lynch JP
    Plant Physiol; 2015 Aug; 168(4):1603-15. PubMed ID: 26077764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative Genetics of Seed Size Traits in Divergent Cereal Lineages Represented by Sorghum (Panicoidae) and Rice (Oryzoidae).
    Zhang D; Li J; Compton RO; Robertson J; Goff VH; Epps E; Kong W; Kim C; Paterson AH
    G3 (Bethesda); 2015 Mar; 5(6):1117-28. PubMed ID: 25834216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance.
    Wu X; Feng H; Wu D; Yan S; Zhang P; Wang W; Zhang J; Ye J; Dai G; Fan Y; Li W; Song B; Geng Z; Yang W; Chen G; Qin F; Terzaghi W; Stitzer M; Li L; Xiong L; Yan J; Buckler E; Yang W; Dai M
    Genome Biol; 2021 Jun; 22(1):185. PubMed ID: 34162419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. StomataScorer: a portable and high-throughput leaf stomata trait scorer combined with deep learning and an improved CV model.
    Liang X; Xu X; Wang Z; He L; Zhang K; Liang B; Ye J; Shi J; Wu X; Dai M; Yang W
    Plant Biotechnol J; 2022 Mar; 20(3):577-591. PubMed ID: 34717024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QTLs Associated with Crown Root Angle, Stomatal Conductance, and Maturity in Sorghum.
    Lopez JR; Erickson JE; Munoz P; Saballos A; Felderhoff TJ; Vermerris W
    Plant Genome; 2017 Jul; 10(2):. PubMed ID: 28724080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural variation in stomata size contributes to the local adaptation of water-use efficiency in Arabidopsis thaliana.
    Dittberner H; Korte A; Mettler-Altmann T; Weber APM; Monroe G; de Meaux J
    Mol Ecol; 2018 Oct; 27(20):4052-4065. PubMed ID: 30118161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining quantitative trait loci analysis with physiological models to predict genotype-specific transpiration rates.
    Reuning GA; Bauerle WL; Mullen JL; McKay JK
    Plant Cell Environ; 2015 Apr; 38(4):710-7. PubMed ID: 25124388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum.
    Allen LH; Kakani VG; Vu JC; Boote KJ
    J Plant Physiol; 2011 Nov; 168(16):1909-18. PubMed ID: 21676489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From the archives: Genetic determinants of trait measurement errors, gene regulatory changes between maize and sorghum, and a tissue-specific regulatory element.
    Cox K
    Plant Cell; 2022 Jul; 34(8):2811-2812. PubMed ID: 35652266
    [No Abstract]   [Full Text] [Related]  

  • 19. Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping.
    Thirunavukkarasu N; Hossain F; Arora K; Sharma R; Shiriga K; Mittal S; Mohan S; Namratha PM; Dogga S; Rani TS; Katragadda S; Rathore A; Shah T; Mohapatra T; Gupta HS
    BMC Genomics; 2014 Dec; 15(1):1182. PubMed ID: 25539911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species.
    Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A
    PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.