These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 34734612)
1. High throughput production of microcapsules using microfluidics for self-healing of cementitious materials. Ribeiro de Souza L; Al-Tabbaa A Lab Chip; 2021 Nov; 21(23):4652-4659. PubMed ID: 34734612 [TBL] [Abstract][Full Text] [Related]
2. Designer polymer-based microcapsules made using microfluidics. Chen PW; Erb RM; Studart AR Langmuir; 2012 Jan; 28(1):144-52. PubMed ID: 22118302 [TBL] [Abstract][Full Text] [Related]
3. Microcapsule Triggering Mechanics in Cementitious Materials: A Modelling and Machine Learning Approach. Ricketts EJ; de Souza LR; Freeman BL; Jefferson A; Al-Tabbaa A Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591660 [TBL] [Abstract][Full Text] [Related]
4. Osmosis-Mediated Microfluidic Production of Submillimeter-Sized Capsules with an Ultrathin Shell for Cosmetic Applications. Hamonangan WM; Lee S; Choi YH; Li W; Tai M; Kim SH ACS Appl Mater Interfaces; 2022 Apr; 14(16):18159-18169. PubMed ID: 35426298 [TBL] [Abstract][Full Text] [Related]
5. Monodisperse alginate microcapsules with oil core generated from a microfluidic device. Ren PW; Ju XJ; Xie R; Chu LY J Colloid Interface Sci; 2010 Mar; 343(1):392-5. PubMed ID: 19963224 [TBL] [Abstract][Full Text] [Related]
6. Micromechanical Properties of a New Polymeric Microcapsule for Self-Healing Cementitious Materials. Lv L; Schlangen E; Yang Z; Xing F Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774144 [TBL] [Abstract][Full Text] [Related]
7. Polymer Capsules with Tunable Shell Thickness Synthesized via Janus-to-core shell Transition of Biphasic Droplets Produced in a Microfluidic Flow-Focusing Device. Xu S; Nisisako T Sci Rep; 2020 Mar; 10(1):4549. PubMed ID: 32165712 [TBL] [Abstract][Full Text] [Related]
8. Modified self-healing cementitious materials based on epoxy and calcium nitrate microencapsulation. Farshi Azhar F; Ahmadinia A; Mohammadjafari Sadeghi A J Microencapsul; 2021 Jun; 38(4):203-217. PubMed ID: 33587668 [TBL] [Abstract][Full Text] [Related]
9. Preparation and Properties of Melamine Urea-Formaldehyde Microcapsules for Self-Healing of Cementitious Materials. Li W; Zhu X; Zhao N; Jiang Z Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773280 [TBL] [Abstract][Full Text] [Related]
10. Self-healing microcapsule - a way towards futuristic cement: an-up-to-date-review. Tarannum N; Singh M J Microencapsul; 2024 Nov; 41(7):620-648. PubMed ID: 39101751 [TBL] [Abstract][Full Text] [Related]
11. Microfluidic Fabrication of Core-Shell Microcapsules carrying Human Pluripotent Stem Cell Spheroids. Gwon K; Hong HJ; Gonzalez-Suarez AM; Stybayeva G; Revzin A J Vis Exp; 2021 Oct; (176):. PubMed ID: 34723935 [TBL] [Abstract][Full Text] [Related]
12. Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. Pessi J; Santos HA; Miroshnyk I; JoukoYliruusi ; Weitz DA; Mirza S Int J Pharm; 2014 Sep; 472(1-2):82-7. PubMed ID: 24928131 [TBL] [Abstract][Full Text] [Related]
13. Microfluidic Fabrication of Phase-Inverted Microcapsules with Asymmetric Shell Membranes with Graded Porosity. Wu Z; Werner JG; Weitz DA ACS Macro Lett; 2021 Jan; 10(1):116-121. PubMed ID: 35548985 [TBL] [Abstract][Full Text] [Related]
14. Controllable preparation of monodisperse alginate microcapsules with oil cores. Mou CL; Deng QZ; Hu JX; Wang LY; Deng HB; Xiao G; Zhan Y J Colloid Interface Sci; 2020 Jun; 569():307-319. PubMed ID: 32126344 [TBL] [Abstract][Full Text] [Related]
15. Tandem emulsification for high-throughput production of double emulsions. Eggersdorfer ML; Zheng W; Nawar S; Mercandetti C; Ofner A; Leibacher I; Koehler S; Weitz DA Lab Chip; 2017 Feb; 17(5):936-942. PubMed ID: 28197593 [TBL] [Abstract][Full Text] [Related]
16. Preparation of dual-chamber microcapsule by Pickering emulsion for self-healing application with ultra-high healing efficiency. Wu K; Chen Y; Luo J; Liu R; Sun G; Liu X J Colloid Interface Sci; 2021 Oct; 600():660-669. PubMed ID: 34049021 [TBL] [Abstract][Full Text] [Related]
17. An Experimental Study on the Healing Performance of Complex Capsules Using Multiphase Inorganic Materials for Crack Self-Healing of Cement Mortars. Choi YW; Kim CG; Nam EJ; Oh SR Materials (Basel); 2022 Dec; 15(24):. PubMed ID: 36556625 [TBL] [Abstract][Full Text] [Related]
18. Monodisperse Selectively Permeable Hydrogel Capsules Made from Single Emulsion Drops. Steinacher M; Cont A; Du H; Persat A; Amstad E ACS Appl Mater Interfaces; 2021 Apr; 13(13):15601-15609. PubMed ID: 33764041 [TBL] [Abstract][Full Text] [Related]
19. Understanding the microfluidic generation of double emulsion droplets with alginate shell. Huang L; Wu K; Cai S; Yu H; Liu D; Yuan W; Chen X; Ji H Colloids Surf B Biointerfaces; 2023 Feb; 222():113114. PubMed ID: 36577345 [TBL] [Abstract][Full Text] [Related]
20. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid. Kim C; Chung S; Kim YE; Lee KS; Lee SH; Oh KW; Kang JY Lab Chip; 2011 Jan; 11(2):246-52. PubMed ID: 20967338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]