BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 3473476)

  • 1. Effect of lipid surface charges on the purple-to-blue transition of bacteriorhodopsin.
    Szundi I; Stoeckenius W
    Proc Natl Acad Sci U S A; 1987 Jun; 84(11):3681-4. PubMed ID: 3473476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purple-to-blue transition of bacteriorhodopsin in a neutral lipid environment.
    Szundi I; Stoeckenius W
    Biophys J; 1988 Aug; 54(2):227-32. PubMed ID: 3207823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface.
    Szundi I; Stoeckenius W
    Biophys J; 1989 Aug; 56(2):369-83. PubMed ID: 2775832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of bacteriorhodopsin color by chloride at low pH. Significance for the proton pump mechanism.
    Renthal R; Shuler K; Regalado R
    Biochim Biophys Acta; 1990 Apr; 1016(3):378-84. PubMed ID: 2158820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protonation state of Asp (Glu)-85 regulates the purple-to-blue transition in bacteriorhodopsin mutants Arg-82----Ala and Asp-85----Glu: the blue form is inactive in proton translocation.
    Subramaniam S; Marti T; Khorana HG
    Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1013-7. PubMed ID: 1967832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of carboxyl residues and membrane lipids in cation binding to bacteriorhodopsin.
    Hrabeta-Robinson E; Semadeni M; Packer L
    Arch Biochem Biophys; 1989 Mar; 269(2):476-84. PubMed ID: 2493216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoreactions of bacteriorhodopsin at acid pH.
    Váró G; Lanyi JK
    Biophys J; 1989 Dec; 56(6):1143-51. PubMed ID: 2611328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of a light-induced pH gradient on purple-to-blue and purple-to-red transitions of bacteriorhodopsin.
    Nasuda-Kouyama A; Fukuda K; Iio T; Kouyama T
    Biochemistry; 1990 Jul; 29(29):6778-88. PubMed ID: 2168741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of cations on the blue to purple transition of bacteriorhodopsin. Comparison of Ca2+ and Hg2+ binding and their effect on the surface potential.
    Duñach M; Seigneuret M; Rigaud JL; Padrós E
    J Biol Chem; 1988 Nov; 263(33):17378-84. PubMed ID: 3182851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrooptical studies on proton-binding and -release of bacteriorhodopsin.
    Tsuji K; Hess B
    Eur Biophys J; 1990; 18(1):63-9. PubMed ID: 2155114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of delipidated bacteriorhodopsin with endogenous polar lipids.
    Lind C; Höjeberg B; Khorana HG
    J Biol Chem; 1981 Aug; 256(16):8298-305. PubMed ID: 7263654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin.
    de Groot HJ; Smith SO; Courtin J; van den Berg E; Winkel C; Lugtenburg J; Griffin RG; Herzfeld J
    Biochemistry; 1990 Jul; 29(29):6873-83. PubMed ID: 2168744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. All-trans to 13-cis retinal isomerization in light-adapted bacteriorhodopsin at acidic pH.
    Chen DL; Wang GY; Xu B; Hu KS
    J Photochem Photobiol B; 2002 Apr; 66(3):188-94. PubMed ID: 11960728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-chromophore interactions in bacteriorhodopsin: the effects of a change in surface potential.
    Swords NA; Wallace BA
    Biochim Biophys Acta; 1991 Dec; 1070(2):313-20. PubMed ID: 1764449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultraviolet-visible transient spectroscopy of bacteriorhodopsin mutants. Evidence for two forms of tyrosine-185----phenylalanine.
    Duñach M; Berkowitz S; Marti T; He YW; Subramaniam S; Khorana HG; Rothschild KJ
    J Biol Chem; 1990 Oct; 265(28):16978-84. PubMed ID: 2211603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved titrations of ASP-85 in bacteriorhodopsin: the multicomponent kinetic mechanism.
    Friedman N; Rousso I; Sheves M; Fu X; Bressler S; Druckmann S; Ottolenghi M
    Biochemistry; 1997 Sep; 36(38):11369-80. PubMed ID: 9298956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal stability of lipid-depleted purple membranes at neutral and low pH values.
    Taneva SG; Koynova R; Tenchov B
    FEBS Lett; 1994 May; 345(2-3):154-8. PubMed ID: 8200449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative translocation of protons and halide ions by bacteriorhodopsin.
    Dér A; Száraz S; Tóth-Boconádi R; Tokaji Z; Keszthelyi L; Stoeckenius W
    Proc Natl Acad Sci U S A; 1991 Jun; 88(11):4751-5. PubMed ID: 1647014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of membrane lipids on the photochemistry of bacteriorhodopsin in the purple membrane of Halobacterium halobium.
    Sherman WV; Caplan SR
    Biochim Biophys Acta; 1978 May; 502(2):222-31. PubMed ID: 580766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid-protein interactions in the purple membrane: structural specificity within the hydrophobic domain.
    Pomerleau V; Harvey-Girard E; Boucher F
    Biochim Biophys Acta; 1995 Mar; 1234(2):221-4. PubMed ID: 7696297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.