BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34734801)

  • 1. Cryo-EM structures of CTP synthase filaments reveal mechanism of pH-sensitive assembly during budding yeast starvation.
    Hansen JM; Horowitz A; Lynch EM; Farrell DP; Quispe J; DiMaio F; Kollman JM
    Elife; 2021 Nov; 10():. PubMed ID: 34734801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryo-EM structures demonstrate human IMPDH2 filament assembly tunes allosteric regulation.
    Johnson MC; Kollman JM
    Elife; 2020 Jan; 9():. PubMed ID: 31999252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FilamentID reveals the composition and function of metabolic enzyme polymers during gametogenesis.
    Hugener J; Xu J; Wettstein R; Ioannidi L; Velikov D; Wollweber F; Henggeler A; Matos J; Pilhofer M
    Cell; 2024 Jun; 187(13):3303-3318.e18. PubMed ID: 38906101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of the human LACTB filament reveals the mechanisms of assembly and membrane binding.
    Bennett JA; Steward LR; Rudolph J; Voss AP; Aydin H
    PLoS Biol; 2022 Dec; 20(12):e3001899. PubMed ID: 36534696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cryo-EM structure of the human uromodulin filament core reveals a unique assembly mechanism.
    Stanisich JJ; Zyla DS; Afanasyev P; Xu J; Kipp A; Olinger E; Devuyst O; Pilhofer M; Boehringer D; Glockshuber R
    Elife; 2020 Aug; 9():. PubMed ID: 32815518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-EM structures of human SID-1 transmembrane family proteins and implications for their low-pH-dependent RNA transport activity.
    Zheng L; Yang T; Guo H; Qi C; Lu Y; Xiao H; Gao Y; Liu Y; Yang Y; Zhou M; Nguyen HC; Zhu Y; Sun F; Zhang CY; Ji X
    Cell Res; 2024 Jan; 34(1):80-83. PubMed ID: 37932445
    [No Abstract]   [Full Text] [Related]  

  • 7. Local chromatin fiber folding represses transcription and loop extrusion in quiescent cells.
    Swygert SG; Lin D; Portillo-Ledesma S; Lin PY; Hunt DR; Kao CF; Schlick T; Noble WS; Tsukiyama T
    Elife; 2021 Nov; 10():. PubMed ID: 34734806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate, temperature, and geographical patterns among nearly 2000 natural yeast isolates.
    Spurley WJ; Fisher KJ; Langdon QK; Buh KV; Jarzyna M; Haase MAB; Sylvester K; Moriarty RV; Rodriguez D; Sheddan A; Wright S; Sorlie L; Hulfachor AB; Opulente DA; Hittinger CT
    Yeast; 2022 Jan; 39(1-2):55-68. PubMed ID: 34741351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Arabidopsis P5CS filament facilitates substrate channelling.
    Guo CJ; Zhang T; Leng Q; Zhou X; Zhong J; Liu JL
    Nat Plants; 2024 Jun; 10(6):880-889. PubMed ID: 38740943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo design of pH-responsive self-assembling helical protein filaments.
    Shen H; Lynch EM; Akkineni S; Watson JL; Decarreau J; Bethel NP; Benna I; Sheffler W; Farrell D; DiMaio F; Derivery E; De Yoreo JJ; Kollman J; Baker D
    Nat Nanotechnol; 2024 Apr; ():. PubMed ID: 38570702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filament formation drives catalysis by glutaminase enzymes important in cancer progression.
    Feng S; Aplin C; Nguyen TT; Milano SK; Cerione RA
    Nat Commun; 2024 Mar; 15(1):1971. PubMed ID: 38438397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-sensitive phosphorylation regulates retinal IMPDH1 activity and filament assembly.
    Calise SJ; O'Neill AG; Burrell AL; Dickinson MS; Molfino J; Clarke C; Quispe J; Sokolov D; Buey RM; Kollman JM
    J Cell Biol; 2024 Apr; 223(4):. PubMed ID: 38323936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytoophidia Influence Cell Cycle and Size in
    Deng R; Li YL; Liu JL
    Int J Mol Sci; 2024 Jan; 25(1):. PubMed ID: 38203781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust assembly of the aldehyde dehydrogenase Ald4p in Saccharomyces cerevisiae.
    Nasalingkhan C; Sirinonthanawech N; Noree C
    Biol Open; 2023 Oct; 12(10):. PubMed ID: 37767855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis of human PRPS2 filaments.
    Lu GM; Hu HH; Chang CC; Zhong J; Zhou X; Guo CJ; Zhang T; Li YL; Yin B; Liu JL
    Cell Biosci; 2023 May; 13(1):100. PubMed ID: 37248548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human PRPS1 filaments stabilize allosteric sites to regulate activity.
    Hvorecny KL; Hargett K; Quispe JD; Kollman JM
    Nat Struct Mol Biol; 2023 Mar; 30(3):391-402. PubMed ID: 36747094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greater than the sum of parts: Mechanisms of metabolic regulation by enzyme filaments.
    Hvorecny KL; Kollman JM
    Curr Opin Struct Biol; 2023 Apr; 79():102530. PubMed ID: 36709625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalization of Young-Laplace, Kelvin, and Gibbs-Thomson equations for arbitrarily curved surfaces.
    Svintradze DV
    Biophys J; 2023 Mar; 122(5):892-904. PubMed ID: 36703559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher-order SPOP assembly reveals a basis for cancer mutant dysregulation.
    Cuneo MJ; O'Flynn BG; Lo YH; Sabri N; Mittag T
    Mol Cell; 2023 Mar; 83(5):731-745.e4. PubMed ID: 36693379
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.