These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 3473495)
1. Structural basis of human erythrocyte glucose transporter function in proteoliposome vesicles: circular dichroism measurements. Chin JJ; Jung EK; Chen V; Jung CY Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4113-6. PubMed ID: 3473495 [TBL] [Abstract][Full Text] [Related]
2. D-glucose binding increases secondary structure of human erythrocyte monosaccharide transport protein. Pawagi AB; Deber CM Biochem Biophys Res Commun; 1987 Jun; 145(3):1087-91. PubMed ID: 3606595 [TBL] [Abstract][Full Text] [Related]
3. Immobilized membrane vesicle or proteoliposome affinity chromatography. Frontal analysis of interactions of cytochalasin B and D-glucose with the human red cell glucose transporter. Brekkan E; Lundqvist A; Lundahl P Biochemistry; 1996 Sep; 35(37):12141-5. PubMed ID: 8810921 [TBL] [Abstract][Full Text] [Related]
4. Structural basis of human erythrocyte glucose transporter function in reconstituted system. Hydrogen exchange. Jung EK; Chin JJ; Jung CY J Biol Chem; 1986 Jul; 261(20):9155-60. PubMed ID: 3722192 [TBL] [Abstract][Full Text] [Related]
5. Immobilized proteoliposome affinity chromatography for quantitative analysis of specific interactions between solutes and membrane proteins. Interaction of cytochalasin B and D-glucose with the glucose transporter Glut1. Yang Q; Lundahl P Biochemistry; 1995 Jun; 34(22):7289-94. PubMed ID: 7779771 [TBL] [Abstract][Full Text] [Related]
6. Structural basis of human erythrocyte glucose transporter function in reconstituted vesicles. Chin JJ; Jung EK; Jung CY J Biol Chem; 1986 Jun; 261(16):7101-4. PubMed ID: 3711076 [TBL] [Abstract][Full Text] [Related]
7. Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucose transporter. Alvarez J; Lee DC; Baldwin SA; Chapman D J Biol Chem; 1987 Mar; 262(8):3502-9. PubMed ID: 3818652 [TBL] [Abstract][Full Text] [Related]
8. ADP modifies the function of the glucose transporter: studies with reconstituted liposomes. Sofue M; Yoshimura Y; Nishida M; Kawada J Biochem J; 1993 Jun; 292 ( Pt 3)(Pt 3):877-81. PubMed ID: 8318016 [TBL] [Abstract][Full Text] [Related]
9. Identification and characterization of the glucose-transport protein of the bovine blood/brain barrier. Kasanicki MA; Cairns MT; Davies A; Gardiner RM; Baldwin SA Biochem J; 1987 Oct; 247(1):101-8. PubMed ID: 3120700 [TBL] [Abstract][Full Text] [Related]
10. Monoclonal antibodies possibly recognize conformational changes in the human erythrocyte glucose transporter. Nishimura H; Kuzuya H; Kosaki A; Okamoto M; Okamoto M; Kono S; Inoue G; Maeda I; Imura H Biochem J; 1992 Jan; 281 ( Pt 1)(Pt 1):103-6. PubMed ID: 1731746 [TBL] [Abstract][Full Text] [Related]
11. Cytochalasin B interferes with conformational changes of the human erythrocyte glucose transporter induced by internal and external sugar binding. King AP; Tai PK; Carter-Su C Biochemistry; 1991 Dec; 30(49):11546-53. PubMed ID: 1747373 [TBL] [Abstract][Full Text] [Related]
12. An ATP-modulated specific association of glyceraldehyde-3-phosphate dehydrogenase with human erythrocyte glucose transporter. Lachaal M; Berenski CJ; Kim J; Jung CY J Biol Chem; 1990 Sep; 265(26):15449-54. PubMed ID: 2394733 [TBL] [Abstract][Full Text] [Related]
13. Glycation of the human erythrocyte glucose transporter in vitro and its functional consequences. Bilan PJ; Klip A Biochem J; 1990 Jun; 268(3):661-7. PubMed ID: 2363703 [TBL] [Abstract][Full Text] [Related]
14. Localization of the forskolin photolabelling site within the monosaccharide transporter of human erythrocytes. Wadzinski BE; Shanahan MF; Seamon KB; Ruoho AE Biochem J; 1990 Nov; 272(1):151-8. PubMed ID: 2264820 [TBL] [Abstract][Full Text] [Related]
15. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes. Albert SG Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046 [TBL] [Abstract][Full Text] [Related]
16. Activation of Glut1 glucose transporter in human erythrocytes. Zhang JZ; Ismail-Beigi F Arch Biochem Biophys; 1998 Aug; 356(1):86-92. PubMed ID: 9681995 [TBL] [Abstract][Full Text] [Related]
17. Solubilization and separation of the human erythrocyte D-glucose transporter covalently and noncovalently photoaffinity-labeled with [3H]cytochalasin B. Kurokawa T; Tillotson LG; Chen CC; Isselbacher KJ Proc Natl Acad Sci U S A; 1986 Jan; 83(2):479-82. PubMed ID: 3455783 [TBL] [Abstract][Full Text] [Related]
18. Secondary-structure analysis of proteins by vacuum-ultraviolet circular dichroism spectroscopy. Matsuo K; Yonehara R; Gekko K J Biochem; 2004 Mar; 135(3):405-11. PubMed ID: 15113839 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the structure and function of the human erythrocyte glucose transporter by proteolytic dissection. Cairns MT; Alvarez J; Panico M; Gibbs AF; Morris HR; Chapman D; Baldwin SA Biochim Biophys Acta; 1987 Dec; 905(2):295-310. PubMed ID: 3689782 [TBL] [Abstract][Full Text] [Related]
20. Human erythrocyte glucose transporter: normal asymmetric orientation and function in liposomes. Chen CC; Kurokawa T; Shaw SY; Tillotson LG; Kalled S; Isselbacher KJ Proc Natl Acad Sci U S A; 1986 Apr; 83(8):2652-6. PubMed ID: 3517873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]