These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34735346)

  • 1. Histogram of States Based Assistive System for Speech Impairment Due to Neurological Disorders.
    Chandrakala S; Malini S; Veni SV
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2425-2434. PubMed ID: 34735346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation Learning Based Speech Assistive System for Persons With Dysarthria.
    Chandrakala S; Rajeswari N
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1510-1517. PubMed ID: 27992342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Acoustic Models in TORGO Dysarthric Speech Database.
    Joy NM; Umesh S
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):637-645. PubMed ID: 29522408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of an HMM/ANN hybrid structure in pattern recognition application using cepstral analysis of dysarthric (distorted) speech signals.
    Polur PD; Miller GE
    Med Eng Phys; 2006 Oct; 28(8):741-8. PubMed ID: 16359906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regularized Speaker Adaptation of KL-HMM for Dysarthric Speech Recognition.
    Kim M; Kim Y; Yoo J; Wang J; Kim H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1581-1591. PubMed ID: 28320669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of phoneme-specific HMM topologies for the automatic recognition of dysarthric speech.
    Caballero-Morales SO
    Comput Math Methods Med; 2013; 2013():297860. PubMed ID: 24222784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of high-frequency spectral components in computer recognition of dysarthric speech based on a Mel-cepstral stochastic model.
    Polur PD; Miller GE
    J Rehabil Res Dev; 2005; 42(3):363-71. PubMed ID: 16187248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Dysarthria Using One-Word Speech Recognition with Hidden Markov Models.
    Lee SH; Kim M; Seo HG; Oh BM; Lee G; Leigh JH
    J Korean Med Sci; 2019 Apr; 34(13):e108. PubMed ID: 30950253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Dysarthria Severity Classification: A Study on Acoustic Features and Deep Learning Techniques.
    Joshy AA; Rajan R
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1147-1157. PubMed ID: 35452390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Different Time-Frequency Representations for Intelligibility Assessment of Dysarthric Speech.
    H M C; Karjigi V; Sreedevi N
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2880-2889. PubMed ID: 33141673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dysarthric Speech Transformer: A Sequence-to-Sequence Dysarthric Speech Recognition System.
    Shahamiri SR; Lal V; Shah D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3407-3416. PubMed ID: 37603475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A joint-feature learning-based voice conversion system for dysarthric user based on deep learning technology.
    Chen KC; Yeh HW; Hang JY; Jhang SH; Zheng WZ; Lai YH
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1838-1841. PubMed ID: 31946255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experiments with fast Fourier transform, linear predictive and cepstral coefficients in dysarthric speech recognition algorithms using hidden Markov Model.
    Polur PD; Miller GE
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):558-61. PubMed ID: 16425838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vocal tract representation in the recognition of cerebral palsied speech.
    Rudzicz F; Hirst G; van Lieshout P
    J Speech Lang Hear Res; 2012 Aug; 55(4):1190-207. PubMed ID: 22271873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dysarthric Speech Enhancement Based on Convolution Neural Network.
    Wang SS; Tsao Y; Zheng WZ; Yeh HW; Li PC; Fang SH; Lai YH
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():60-64. PubMed ID: 36085875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the use of hidden Markov modelling for recognition of dysarthric speech.
    Deller JR; Hsu D; Ferrier LJ
    Comput Methods Programs Biomed; 1991 Jun; 35(2):125-39. PubMed ID: 1914451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Hybrid HMM/DNN Embedding Extractor Models in Computational Paralinguistic Tasks.
    VetrĂ¡b M; Gosztolya G
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic speech recognition and training for severely dysarthric users of assistive technology: the STARDUST project.
    Parker M; Cunningham S; Enderby P; Hawley M; Green P
    Clin Linguist Phon; 2006; 20(2-3):149-56. PubMed ID: 16428231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A clinician-judged technique for quantifying dysarthric speech based on single-word intelligibility.
    Yorkston KM; Beukelman DR
    J Commun Disord; 1980 Jan; 13(1):15-31. PubMed ID: 7354139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Stage Audio-Visual Fusion for Dysarthric Speech Recognition With Pre-Trained Models.
    Yu C; Su X; Qian Z
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1912-1921. PubMed ID: 37030692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.