These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 34736219)

  • 1. From reversible to irreversible: When the membrane nanotube pearling is coupled with phase separation.
    Zhang X; Kang R; Liu Y; Yan Z; Xu Y; Yue T
    Colloids Surf B Biointerfaces; 2022 Jan; 209(Pt 1):112160. PubMed ID: 34736219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane nanotube pearling restricted by confined polymers.
    Yan Z; Li S; Luo Z; Xu Y; Yue T
    Soft Matter; 2018 Nov; 14(46):9383-9392. PubMed ID: 30418454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the shape deformation of biomembrane tubes with theoretical analysis and computer simulation.
    Liu X; Tian F; Yue T; Zhang X; Zhong C
    Soft Matter; 2016 Nov; 12(44):9077-9085. PubMed ID: 27747359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular modeling of membrane tube pearling and the effect of nanoparticle adsorption.
    Yue T; Zhang X; Huang F
    Phys Chem Chem Phys; 2014 Jun; 16(22):10799-809. PubMed ID: 24760327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How tubular aggregates interact with biomembranes: wrapping, fusion and pearling.
    Yue T; Xu Y; Sun M; Zhang X; Huang F
    Phys Chem Chem Phys; 2016 Jan; 18(2):1082-91. PubMed ID: 26659809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of Flexible Nanotubes Formed by Liquid-Ordered and Liquid-Disordered Membranes.
    Liu Y; Agudo-Canalejo J; Grafmüller A; Dimova R; Lipowsky R
    ACS Nano; 2016 Jan; 10(1):463-74. PubMed ID: 26588094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curved membrane structures induced by native lipids in giant vesicles.
    Nair KS; Raj NB; Nampoothiri KM; Mohanan G; Acosta-Gutiérrez S; Bajaj H
    J Colloid Interface Sci; 2022 Apr; 611():397-407. PubMed ID: 34963074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model for curvature-driven pearling instability in membranes.
    Campelo F; Hernández-Machado A
    Phys Rev Lett; 2007 Aug; 99(8):088101. PubMed ID: 17930984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of ternary bilayer mixtures with asymmetric or symmetric unsaturated phosphatidylcholine lipids by coarse grained molecular dynamics simulations.
    Rosetti C; Pastorino C
    J Phys Chem B; 2012 Mar; 116(11):3525-37. PubMed ID: 22369354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inter-tube adhesion mediates a new pearling mechanism.
    Yue T; Tian F; Sun M; Zhang X; Huang F
    Phys Chem Chem Phys; 2016 Jan; 18(1):361-74. PubMed ID: 26616465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling nanotube dimensions: correlation between composition, diameter, and internal energy of single-walled mixed oxide nanotubes.
    Konduri S; Mukherjee S; Nair S
    ACS Nano; 2007 Dec; 1(5):393-402. PubMed ID: 19206659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid nanotube formation from streptavidin-membrane binding.
    Liu H; Bachand GD; Kim H; Hayden CC; Abate EA; Sasaki DY
    Langmuir; 2008 Apr; 24(8):3686-9. PubMed ID: 18336048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cationic membranes complexed with oppositely charged microtubules: hierarchical self-assembly leading to bio-nanotubes.
    Raviv U; Needleman DJ; Safinya CR
    J Phys Condens Matter; 2006 Jul; 18(28):S1271-9. PubMed ID: 21690840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contactless Stimulation and Control of Biomimetic Nanotubes by Calcium Ion Gradients.
    Kirejev V; Ali Doosti B; Shaali M; Jeffries GDM; Lobovkina T
    Small; 2018 May; 14(21):e1703541. PubMed ID: 29665219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composition based strategies for controlling radii in lipid nanotubes.
    Kurczy ME; Mellander LJ; Najafinobar N; Cans AS
    PLoS One; 2014; 9(1):e81293. PubMed ID: 24392077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pearling barley and rye to produce phytosterol-rich fractions.
    Lampi AM; Moreau RA; Piironen V; Hicks KB
    Lipids; 2004 Aug; 39(8):783-7. PubMed ID: 15638247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulling Membrane Nanotubes from Giant Unilamellar Vesicles.
    Prévost C; Tsai FC; Bassereau P; Simunovic M
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29286431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pearling instabilities of membrane tubes with anchored polymers.
    Tsafrir I; Sagi D; Arzi T; Guedeau-Boudeville MA; Frette V; Kandel D; Stavans J
    Phys Rev Lett; 2001 Feb; 86(6):1138-41. PubMed ID: 11178029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the self-assembly of lipids and nanotubes in solution: forming vesicles and bicelles with transmembrane nanotube channels.
    Dutt M; Kuksenok O; Nayhouse MJ; Little SR; Balazs AC
    ACS Nano; 2011 Jun; 5(6):4769-82. PubMed ID: 21604769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes.
    Skandani AA; Zeineldin R; Al-Haik M
    Langmuir; 2012 May; 28(20):7872-9. PubMed ID: 22545729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.