These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 34736243)

  • 1. Predicting the effective thermal conductivity of unfrozen soils with various water contents based on artificial neural network.
    Zhu CY; He ZY; Du M; Gong L; Wang X
    Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34736243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial neural network model to predict transport parameters of reactive solutes from basic soil properties.
    Mojid MA; Hossain ABMZ; Ashraf MA
    Environ Pollut; 2019 Dec; 255(Pt 2):113355. PubMed ID: 31668956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experiment and Artificial Neural Network Prediction of Thermal Conductivity and Viscosity for Alumina-Water Nanofluids.
    Zhao N; Li Z
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the Thermal Conductivity of Refrigerants by Computational Methods and Artificial Neural Network.
    Ghaderi F; Ghaderi AH; Ghaderi N; Najafi B
    Front Chem; 2017; 5():99. PubMed ID: 29188217
    [No Abstract]   [Full Text] [Related]  

  • 5. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP.
    Jalal FE; Xu Y; Iqbal M; Javed MF; Jamhiri B
    J Environ Manage; 2021 Jul; 289():112420. PubMed ID: 33831756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the phenolic waste attenuation capacity of some fine-grained soils with the help of ANN modeling.
    Pal S; Mukherjee S; Ghosh S
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3524-33. PubMed ID: 24271727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of the Thermal Conductivity of Unfrozen and Frozen Food Materials by a Steady State Method with Coaxial Dual-cylinder Apparatus.
    Pongsawatmanit R; Miyawaki O; Yano T
    Biosci Biotechnol Biochem; 1993 Jan; 57(7):1072-6. PubMed ID: 27280988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of Thermo-Physical Properties of TiO
    Sadeghzadeh M; Maddah H; Ahmadi MH; Khadang A; Ghazvini M; Mosavi A; Nabipour N
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32272574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network.
    Bu L; Du G; Hou Q
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using artificial neural network in predicting the key fruit quality of loquat.
    Huang X; Wang H; Qu S; Luo W; Gao Z
    Food Sci Nutr; 2021 Mar; 9(3):1780-1791. PubMed ID: 33747488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conductivity of dry fly ashes with various carbon and biomass contents.
    Choo H; Won J; Burns SE
    Waste Manag; 2021 Nov; 135():122-129. PubMed ID: 34492605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement and Prediction of Thermal Conductivity of Nanofluids Containing TiO₂ Nanoparticles.
    Verma K; Agarwal R; Duchaniya RK; Singh R
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1068-075. PubMed ID: 29676551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial Neural Network Model for the Prediction of Thermal Conductivity of Saturated Liquid Refrigerants and
    Meng X; Yang S; Tian J
    ACS Omega; 2022 Nov; 7(47):43122-43129. PubMed ID: 36467959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical resistivity characteristics of diesel oil-contaminated kaolin clay and a resistivity-based detection method.
    Liu Z; Liu S; Cai Y; Fang W
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8216-23. PubMed ID: 25516255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of Granite Soils and Prediction of Soil Water Content Using Hyperspectral Visible and Near-Infrared Imaging.
    Lim HH; Cheon E; Lee DH; Jeon JS; Lee SR
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement and prediction on thermal conductivity of fused quartz.
    Zhang XR; Kong GQ; Wang LH; Xu XL
    Sci Rep; 2020 Apr; 10(1):6559. PubMed ID: 32300205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model.
    Ravansalar M; Rajaee T
    Environ Monit Assess; 2015 Jun; 187(6):366. PubMed ID: 25990827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational and training requirements for interatomic potential based on artificial neural network for estimating low thermal conductivity of silver chalcogenides.
    Shimamura K; Takeshita Y; Fukushima S; Koura A; Shimojo F
    J Chem Phys; 2020 Dec; 153(23):234301. PubMed ID: 33353316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of compressibility parameters of the soils using artificial neural network.
    Kurnaz TF; Dagdeviren U; Yildiz M; Ozkan O
    Springerplus; 2016; 5(1):1801. PubMed ID: 27803846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance analysis of multi-gap V-roughness with staggered elements of solar air heater based on artificial neural network and experimental investigations.
    Jain PK; Lanjewar A; Jain R; Rana KB
    Environ Sci Pollut Res Int; 2021 Feb; ():. PubMed ID: 33635462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.