These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 34736392)
1. Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties. Li H; Yang M; Zhao C; Wang Y; Zhang R BMC Plant Biol; 2021 Nov; 21(1):513. PubMed ID: 34736392 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352 [TBL] [Abstract][Full Text] [Related]
3. iTRAQ-Based Proteomic Analysis Reveals Several Strategies to Cope with Drought Stress in Maize Seedlings. Jiang Z; Jin F; Shan X; Li Y Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779286 [TBL] [Abstract][Full Text] [Related]
4. Comparative Proteomic and Physiological Analyses of Two Divergent Maize Inbred Lines Provide More Insights into Drought-Stress Tolerance Mechanisms. Zenda T; Liu S; Wang X; Jin H; Liu G; Duan H Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30340410 [TBL] [Abstract][Full Text] [Related]
5. Comparative Proteomics Analysis of the Seedling Root Response of Drought-sensitive and Drought-tolerant Maize Varieties to Drought Stress. Zeng W; Peng Y; Zhao X; Wu B; Chen F; Ren B; Zhuang Z; Gao Q; Ding Y Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31181633 [TBL] [Abstract][Full Text] [Related]
6. Comparative Proteomics and Physiological Analyses Reveal Important Maize Filling-Kernel Drought-Responsive Genes and Metabolic Pathways. Wang X; Zenda T; Liu S; Liu G; Jin H; Dai L; Dong A; Yang Y; Duan H Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370198 [TBL] [Abstract][Full Text] [Related]
7. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. Zhang X; Lei L; Lai J; Zhao H; Song W BMC Plant Biol; 2018 Apr; 18(1):68. PubMed ID: 29685101 [TBL] [Abstract][Full Text] [Related]
8. Is Photoprotection of PSII One of the Key Mechanisms for Drought Tolerance in Maize? Bashir N; Athar HU; Kalaji HM; Wróbel J; Mahmood S; Zafar ZU; Ashraf M Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948287 [TBL] [Abstract][Full Text] [Related]
9. Deletion of an Endoplasmic Reticulum Stress Response Element in a ZmPP2C-A Gene Facilitates Drought Tolerance of Maize Seedlings. Xiang Y; Sun X; Gao S; Qin F; Dai M Mol Plant; 2017 Mar; 10(3):456-469. PubMed ID: 27746300 [TBL] [Abstract][Full Text] [Related]
10. iTRAQ-based quantitative proteomic analysis provides insight into the drought-stress response in maize seedlings. Ren W; Shi Z; Zhou M; Zhao B; Li H; Wang J; Liu Y; Zhao J Sci Rep; 2022 Jun; 12(1):9520. PubMed ID: 35681021 [TBL] [Abstract][Full Text] [Related]
11. Physiological and proteomic analysis of maize seedling response to water deficiency stress. Xin L; Zheng H; Yang Z; Guo J; Liu T; Sun L; Xiao Y; Yang J; Yang Q; Guo L J Plant Physiol; 2018 Sep; 228():29-38. PubMed ID: 29852332 [TBL] [Abstract][Full Text] [Related]
12. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576 [TBL] [Abstract][Full Text] [Related]
13. Comparative Proteomic and Morpho-Physiological Analyses of Maize Wild-Type Vp16 and Mutant vp16 Germinating Seed Responses to PEG-Induced Drought Stress. Liu S; Zenda T; Dong A; Yang Y; Liu X; Wang Y; Li J; Tao Y; Duan H Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717328 [TBL] [Abstract][Full Text] [Related]
14. Regulatory mechanisms used by ZmMYB39 to enhance drought tolerance in maize (Zea mays) seedlings. Ren Z; Zhang P; Su H; Xie X; Shao J; Ku L; Tian Z; Deng D; Wei L Plant Physiol Biochem; 2024 Jun; 211():108696. PubMed ID: 38705046 [TBL] [Abstract][Full Text] [Related]
15. Inter-subspecies diversity of maize to drought stress with physio-biochemical, enzymatic and molecular responses. Eskikoy G; Kutlu I PeerJ; 2024; 12():e17931. PubMed ID: 39184382 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomic and physiological responses of contrasting maize genotypes to drought stress. Wang Y; Guo H; Wu X; Wang J; Li H; Zhang R Front Plant Sci; 2022; 13():928897. PubMed ID: 35991451 [TBL] [Abstract][Full Text] [Related]
17. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines. Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211 [TBL] [Abstract][Full Text] [Related]
18. Quantitative proteomic analysis of two different rice varieties reveals that drought tolerance is correlated with reduced abundance of photosynthetic machinery and increased abundance of ClpD1 protease. Wu Y; Mirzaei M; Pascovici D; Chick JM; Atwell BJ; Haynes PA J Proteomics; 2016 Jun; 143():73-82. PubMed ID: 27195813 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.). Cao L; Lu X; Wang G; Zhang P; Fu J; Wang Z; Wei L; Wang T Mol Genet Genomics; 2021 Nov; 296(6):1203-1219. PubMed ID: 34601650 [TBL] [Abstract][Full Text] [Related]
20. Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance. Chen F; Fang P; Peng Y; Zeng W; Zhao X; Ding Y; Zhuang Z; Gao Q; Ren B Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]