These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 34736678)
1. A new near-infrared excitation/emission fluorescent probe for the detection of β-galactosidase in living cells and in vivo. Li Y; Liu F; Zhu D; Zhu T; Zhang Y; Li Y; Luo J; Kong L Talanta; 2022 Jan; 237():122952. PubMed ID: 34736678 [TBL] [Abstract][Full Text] [Related]
2. Visualization of endogenous β-galactosidase activity in living cells and zebrafish with a turn-on near-infrared fluorescent probe. Pang X; Li Y; Zhou Z; Lu Q; Xie R; Wu C; Zhang Y; Li H Talanta; 2020 Sep; 217():121098. PubMed ID: 32498839 [TBL] [Abstract][Full Text] [Related]
3. A near-infrared fluorescent probe for monitoring and imaging of β-galactosidase in living cells. Wu C; Ni Z; Li P; Li Y; Pang X; Xie R; Zhou Z; Li H; Zhang Y Talanta; 2020 Nov; 219():121307. PubMed ID: 32887048 [TBL] [Abstract][Full Text] [Related]
4. Real-Time Tracking and In Vivo Visualization of β-Galactosidase Activity in Colorectal Tumor with a Ratiometric Near-Infrared Fluorescent Probe. Gu K; Xu Y; Li H; Guo Z; Zhu S; Zhu S; Shi P; James TD; Tian H; Zhu WH J Am Chem Soc; 2016 Apr; 138(16):5334-40. PubMed ID: 27054782 [TBL] [Abstract][Full Text] [Related]
5. A sensitive fluorescent probe for β-galactosidase activity detection and application in ovarian tumor imaging. Fan F; Zhang L; Zhou X; Mu F; Shi G J Mater Chem B; 2021 Jan; 9(1):170-175. PubMed ID: 33230516 [TBL] [Abstract][Full Text] [Related]
6. A novel NIR fluorescent probe for enhanced β-galactosidase detection and tumor imaging in ovarian cancer models. Luo W; Diao Q; Lv L; Li T; Ma P; Song D Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124411. PubMed ID: 38728851 [TBL] [Abstract][Full Text] [Related]
7. In vivo ratiometric tracking of endogenous β-galactosidase activity using an activatable near-infrared fluorescent probe. Shi L; Yan C; Ma Y; Wang T; Guo Z; Zhu WH Chem Commun (Camb); 2019 Oct; 55(82):12308-12311. PubMed ID: 31556426 [TBL] [Abstract][Full Text] [Related]
8. Imaging of ovarian cancers using enzyme activatable probes with second near-infrared window emission. Chen JA; Pan H; Wang Z; Gao J; Tan J; Ouyang Z; Guo W; Gu X Chem Commun (Camb); 2020 Mar; 56(18):2731-2734. PubMed ID: 32022000 [TBL] [Abstract][Full Text] [Related]
9. A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase. Zhang X; Chen X; Zhang Y; Liu K; Shen H; Zheng E; Huang X; Hou S; Ma X Anal Bioanal Chem; 2019 Dec; 411(30):7957-7966. PubMed ID: 31732786 [TBL] [Abstract][Full Text] [Related]
10. A near-infrared fluorescent probe with a substantial Stokes shift designed for the detection and imaging of β-galactosidase within living cells and animals. Lo YP; Nivetha N; Velmathi S; Wu SP Methods; 2024 Feb; 222():10-18. PubMed ID: 38154527 [TBL] [Abstract][Full Text] [Related]
11. Rational design of near-infrared ratiometric fluorescent probes for real-time tracking of β-galactosidase in vivo. Chen S; Liu M; Zi Y; He J; Wang L; Wu Y; Hou S; Wu W Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121879. PubMed ID: 36122464 [TBL] [Abstract][Full Text] [Related]
12. First aggregation-induced emission-active probe for species-specific detection of β-galactosidase. Gao T; Li H; Wu Y; Deng C; Xie Y; Wang J; Yang Y; Lv Q; Jin Q; Chen Y; Yi L; Zhong Y; Li X; Zhao Q; Zhang L; Xie M Talanta; 2021 Dec; 235():122659. PubMed ID: 34517575 [TBL] [Abstract][Full Text] [Related]
13. Rapid fluorescence imaging of human hepatocellular carcinoma using the β-galactosidase-activatable fluorescence probe SPiDER-βGal. Ogawa S; Kubo H; Murayama Y; Kubota T; Yubakami M; Matsumoto T; Yamamoto Y; Morimura R; Ikoma H; Okamoto K; Kamiya M; Urano Y; Otsuji E Sci Rep; 2021 Sep; 11(1):17946. PubMed ID: 34504174 [TBL] [Abstract][Full Text] [Related]
14. Near-infrared fluorescent probe with a large Stokes shift for bioimaging of β-galactosidase in living cells and zebrafish develop at different period. Chen S; Niu K; Wang L; Wu Y; Hou S; Ma X Anal Chim Acta; 2022 Nov; 1232():340459. PubMed ID: 36257743 [TBL] [Abstract][Full Text] [Related]
15. An activatable fluorescence probe for rapid detection and in situ imaging of β-galactosidase activity in cabbage roots under heavy metal stress. Zhao K; Tan H; Fang C; Zhou Z; Wu C; Zhu X; Liu F; Zhang Y; Li H Food Chem; 2024 Sep; 452():139557. PubMed ID: 38728895 [TBL] [Abstract][Full Text] [Related]
16. In vivo imaging of β-galactosidase stimulated activity in hepatocellular carcinoma using ligand-targeted fluorescent probe. Kim EJ; Kumar R; Sharma A; Yoon B; Kim HM; Lee H; Hong KS; Kim JS Biomaterials; 2017 Apr; 122():83-90. PubMed ID: 28110172 [TBL] [Abstract][Full Text] [Related]
17. Specific Near-Infrared Probe for Ultrafast Imaging of Lysosomal β-Galactosidase in Ovarian Cancer Cells. Li X; Pan Y; Chen H; Duan Y; Zhou S; Wu W; Wang S; Liu B Anal Chem; 2020 Apr; 92(8):5772-5779. PubMed ID: 32212603 [TBL] [Abstract][Full Text] [Related]
18. An NIR Fluorescence Turn-on and MRl Bimodal Probe for Concurrent Real-time in vivo Sensing and Labeling of β-Galactosidase. Yu Q; Zhang L; Jiang M; Xiao L; Xiang Y; Wang R; Liu Z; Zhou R; Yang M; Li C; Liu M; Zhou X; Chen S Angew Chem Int Ed Engl; 2023 Nov; 62(46):e202313137. PubMed ID: 37766426 [TBL] [Abstract][Full Text] [Related]
19. β-Galactosidase-activated near-infrared AIEgen for ovarian cancer imaging in vivo. Xu L; Gao H; Deng Y; Liu X; Zhan W; Sun X; Xu JJ; Liang G Biosens Bioelectron; 2024 Jul; 255():116207. PubMed ID: 38554575 [TBL] [Abstract][Full Text] [Related]
20. Visualized Enzyme-Activated Fluorescence Probe for Accurately Detecting β-Gal in Living Cells and BALB/c Nude Mice. Huang X; Chang L; Ge J; Wang P; Yin R; Liu G; Wang G J Fluoresc; 2024 Apr; ():. PubMed ID: 38607528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]