These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 34736955)
1. The pore-forming activity of sticholysin I is enhanced by the presence of a phospholipid hydroperoxide in membrane. Donato M; Soto C; Lanio ME; Itri R; Álvarez C Toxicon; 2021 Dec; 204():44-55. PubMed ID: 34736955 [TBL] [Abstract][Full Text] [Related]
2. Regulation of Sticholysin II-Induced Pore Formation by Lipid Bilayer Composition, Phase State, and Interfacial Properties. Palacios-Ortega J; García-Linares S; Åstrand M; Al Sazzad MA; Gavilanes JG; Martínez-del-Pozo Á; Slotte JP Langmuir; 2016 Apr; 32(14):3476-84. PubMed ID: 27003246 [TBL] [Abstract][Full Text] [Related]
3. Hydroperoxide and carboxyl groups preferential location in oxidized biomembranes experimentally determined by small angle X-ray scattering: Implications in membrane structure. Rosa R; Spinozzi F; Itri R Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2299-2307. PubMed ID: 29852123 [TBL] [Abstract][Full Text] [Related]
5. The Important Role of Membrane Fluidity on the Lytic Mechanism of the α-Pore-Forming Toxin Sticholysin I. Pedrera L; Ros U; Fanani ML; Lanio ME; Epand RM; García-Sáez AJ; Álvarez C Toxins (Basel); 2023 Jan; 15(1):. PubMed ID: 36668899 [TBL] [Abstract][Full Text] [Related]
6. Sticholysin I-membrane interaction: an interplay between the presence of sphingomyelin and membrane fluidity. Pedrera L; Fanani ML; Ros U; Lanio ME; Maggio B; Alvarez C Biochim Biophys Acta; 2014 Jul; 1838(7):1752-9. PubMed ID: 24680653 [TBL] [Abstract][Full Text] [Related]
7. Toxin-induced pore formation is hindered by intermolecular hydrogen bonding in sphingomyelin bilayers. García-Linares S; Palacios-Ortega J; Yasuda T; Åstrand M; Gavilanes JG; Martínez-del-Pozo Á; Slotte JP Biochim Biophys Acta; 2016 Jun; 1858(6):1189-95. PubMed ID: 26975250 [TBL] [Abstract][Full Text] [Related]
8. The Presence of Sterols Favors Sticholysin I-Membrane Association and Pore Formation Regardless of Their Ability to Form Laterally Segregated Domains. Pedrera L; Gomide AB; Sánchez RE; Ros U; Wilke N; Pazos F; Lanio ME; Itri R; Fanani ML; Alvarez C Langmuir; 2015 Sep; 31(36):9911-23. PubMed ID: 26273899 [TBL] [Abstract][Full Text] [Related]
9. Membrane permeabilization induced by Triton X-100: The role of membrane phase state and edge tension. Mattei B; Lira RB; Perez KR; Riske KA Chem Phys Lipids; 2017 Jan; 202():28-37. PubMed ID: 27913102 [TBL] [Abstract][Full Text] [Related]
10. The single-giant unilamellar vesicle method reveals lysenin-induced pore formation in lipid membranes containing sphingomyelin. Alam JM; Kobayashi T; Yamazaki M Biochemistry; 2012 Jun; 51(25):5160-72. PubMed ID: 22668506 [TBL] [Abstract][Full Text] [Related]
11. The sticholysin family of pore-forming toxins induces the mixing of lipids in membrane domains. Ros U; Edwards MA; Epand RF; Lanio ME; Schreier S; Yip CM; Alvarez C; Epand RM Biochim Biophys Acta; 2013 Nov; 1828(11):2757-62. PubMed ID: 23954588 [TBL] [Abstract][Full Text] [Related]
13. Differential binding and activity of the pore-forming toxin sticholysin II in model membranes containing diverse ceramide-derived lipids. Soto C; Del Valle A; Valiente PA; Ros U; Lanio ME; Hernández AM; Alvarez C Biochimie; 2017 Jul; 138():20-31. PubMed ID: 28396016 [TBL] [Abstract][Full Text] [Related]
14. 2NH and 3OH are crucial structural requirements in sphingomyelin for sticholysin II binding and pore formation in bilayer membranes. Maula T; Isaksson YJ; García-Linares S; Niinivehmas S; Pentikäinen OT; Kurita M; Yamaguchi S; Yamamoto T; Katsumura S; Gavilanes JG; Martínez-del-Pozo A; Slotte JP Biochim Biophys Acta; 2013 May; 1828(5):1390-5. PubMed ID: 23376330 [TBL] [Abstract][Full Text] [Related]
15. Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Valcarcel CA; Dalla Serra M; Potrich C; Bernhart I; Tejuca M; Martinez D; Pazos F; Lanio ME; Menestrina G Biophys J; 2001 Jun; 80(6):2761-74. PubMed ID: 11371451 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic comparison of the interactions of cholesterol with unsaturated phospholipid and sphingomyelins. Tsamaloukas A; Szadkowska H; Heerklotz H Biophys J; 2006 Jun; 90(12):4479-87. PubMed ID: 16581844 [TBL] [Abstract][Full Text] [Related]
17. Architecture of the pore forming toxin sticholysin I in membranes. Hervis YP; Valle A; Dunkel S; Klare JP; Canet L; Lanio ME; Alvarez C; Pazos IF; Steinhoff HJ J Struct Biol; 2019 Oct; 208(1):30-42. PubMed ID: 31330179 [TBL] [Abstract][Full Text] [Related]
19. Functional characterization of sticholysin I and W111C mutant reveals the sequence of the actinoporin's pore assembly. Antonini V; Pérez-Barzaga V; Bampi S; Pentón D; Martínez D; Dalla Serra M; Tejuca M PLoS One; 2014; 9(10):e110824. PubMed ID: 25350457 [TBL] [Abstract][Full Text] [Related]
20. Equinatoxin II permeabilizing activity depends on the presence of sphingomyelin and lipid phase coexistence. Schön P; García-Sáez AJ; Malovrh P; Bacia K; Anderluh G; Schwille P Biophys J; 2008 Jul; 95(2):691-8. PubMed ID: 18390598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]