BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34736955)

  • 21. Lipid Hydroperoxide Compromises the Membrane Structure Organization and Softens Bending Rigidity.
    Scanavachi G; Coutinho A; Fedorov AA; Prieto M; Melo AM; Itri R
    Langmuir; 2021 Aug; 37(33):9952-9963. PubMed ID: 34374545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential Effect of Membrane Composition on the Pore-Forming Ability of Four Different Sea Anemone Actinoporins.
    García-Linares S; Rivera-de-Torre E; Morante K; Tsumoto K; Caaveiro JM; Gavilanes JG; Slotte JP; Martínez-Del-Pozo Á
    Biochemistry; 2016 Dec; 55(48):6630-6641. PubMed ID: 27933793
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane cholesterol and sphingomyelin, and ostreolysin A are obligatory for pore-formation by a MACPF/CDC-like pore-forming protein, pleurotolysin B.
    Ota K; Leonardi A; Mikelj M; Skočaj M; Wohlschlager T; Künzler M; Aebi M; Narat M; Križaj I; Anderluh G; Sepčić K; Maček P
    Biochimie; 2013 Oct; 95(10):1855-64. PubMed ID: 23806422
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How Lipid Membranes Affect Pore Forming Toxin Activity.
    Rojko N; Anderluh G
    Acc Chem Res; 2015 Dec; 48(12):3073-9. PubMed ID: 26641659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sticholysins, two pore-forming toxins produced by the Caribbean Sea anemone Stichodactyla helianthus: their interaction with membranes.
    Alvarez C; Mancheño JM; Martínez D; Tejuca M; Pazos F; Lanio ME
    Toxicon; 2009 Dec; 54(8):1135-47. PubMed ID: 19268489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cholesterol stimulates and ceramide inhibits Sticholysin II-induced pore formation in complex bilayer membranes.
    Alm I; García-Linares S; Gavilanes JG; Martínez-Del-Pozo Á; Slotte JP
    Biochim Biophys Acta; 2015 Apr; 1848(4):925-31. PubMed ID: 25546840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solubilization of binary lipid mixtures by the detergent Triton X-100: the role of cholesterol.
    Mattei B; França AD; Riske KA
    Langmuir; 2015; 31(1):378-86. PubMed ID: 25474726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Triton X-100 on Raft-Like Lipid Mixtures: Phase Separation and Selective Solubilization.
    Caritá AC; Mattei B; Domingues CC; de Paula E; Riske KA
    Langmuir; 2017 Jul; 33(29):7312-7321. PubMed ID: 28474888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical damage on giant vesicles membrane as a result of methylene blue photoirradiation.
    Mertins O; Bacellar IO; Thalmann F; Marques CM; Baptista MS; Itri R
    Biophys J; 2014 Jan; 106(1):162-71. PubMed ID: 24411248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical and morphological effects of the contraceptive hormone 17 α-ethynylestradiol on fluid lipid membranes.
    Ruiz GCM; do Carmo Morato LF; Pazin WM; Milano F; Constantino CJL; Valli L; Giotta L
    Colloids Surf B Biointerfaces; 2021 Aug; 204():111794. PubMed ID: 33940520
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of a mutant of the pore-forming toxin sticholysin-I for the construction of proteinase-activated immunotoxins.
    Pentón D; Pérez-Barzaga V; Díaz I; Reytor ML; Campos J; Fando R; Calvo L; Cilli EM; Morera V; Castellanos-Serra LR; Pazos F; Lanio ME; Alvarez C; Pons T; Tejuca M
    Protein Eng Des Sel; 2011 Jun; 24(6):485-93. PubMed ID: 21296830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microwave measurement of giant unilamellar vesicles in aqueous solution.
    Cui Y; Delaney WF; Darroudi T; Wang P
    Sci Rep; 2018 Jan; 8(1):497. PubMed ID: 29323157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetics and thermodynamics of the association of dehydroergosterol with lipid bilayer membranes.
    Estronca LM; Moreno MJ; Vaz WL
    Biophys J; 2007 Dec; 93(12):4244-53. PubMed ID: 17766353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids.
    Rawicz W; Smith BA; McIntosh TJ; Simon SA; Evans E
    Biophys J; 2008 Jun; 94(12):4725-36. PubMed ID: 18339739
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution NMR analysis of the interaction between the actinoporin sticholysin I and DHPC micelles--correlation with backbone dynamics.
    López-Castilla A; Pazos F; Schreier S; Pires JR
    Proteins; 2014 Jun; 82(6):1022-34. PubMed ID: 24218049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insight into the Exosomal Membrane: From Viewpoints of Membrane Fluidity and Polarity.
    Suga K; Matsui D; Watanabe N; Okamoto Y; Umakoshi H
    Langmuir; 2021 Sep; 37(38):11195-11202. PubMed ID: 34528800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies.
    Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M
    J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.