BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34737117)

  • 1. Biallelic loss-of-function variants of GFRA1 cause lethal bilateral renal agenesis.
    Al-Shamsi B; Al-Kasbi G; Al-Kindi A; Bruwer Z; Al-Kharusi K; Al-Maawali A
    Eur J Med Genet; 2022 Jan; 65(1):104376. PubMed ID: 34737117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biallelic Pathogenic
    Arora V; Khan S; El-Hattab AW; Dua Puri R; Rocha ME; Merdzanic R; Paknia O; Beetz C; Rolfs A; Bertoli-Avella AM; Bauer P; Verma IC
    J Am Soc Nephrol; 2021 Jan; 32(1):223-228. PubMed ID: 33020172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Biallelic Frameshift Mutation in Nephronectin Causes Bilateral Renal Agenesis in Humans.
    Dai L; Li J; Xie L; Wang W; Lu Y; Xie M; Huang J; Shen K; Yang H; Pei C; Zhao Y; Zhang W
    J Am Soc Nephrol; 2021 Aug; 32(8):1871-1879. PubMed ID: 34049960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Gene Implicated in Activation of Retinoic Acid Receptor Targets Is a Novel Renal Agenesis Gene in Humans.
    Brophy PD; Rasmussen M; Parida M; Bonde G; Darbro BW; Hong X; Clarke JC; Peterson KA; Denegre J; Schneider M; Sussman CR; Sunde L; Lildballe DL; Hertz JM; Cornell RA; Murray SA; Manak JR
    Genetics; 2017 Sep; 207(1):215-228. PubMed ID: 28739660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in GREB1L Cause Bilateral Kidney Agenesis in Humans and Mice.
    De Tomasi L; David P; Humbert C; Silbermann F; Arrondel C; Tores F; Fouquet S; Desgrange A; Niel O; Bole-Feysot C; Nitschké P; Roume J; Cordier MP; Pietrement C; Isidor B; Khau Van Kien P; Gonzales M; Saint-Frison MH; Martinovic J; Novo R; Piard J; Cabrol C; Verma IC; Puri R; Journel H; Aziza J; Gavard L; Said-Menthon MH; Heidet L; Saunier S; Jeanpierre C
    Am J Hum Genet; 2017 Nov; 101(5):803-814. PubMed ID: 29100091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Missense Variants in
    Al-Hamed MH; Sayer JA; Alsahan N; Edwards N; Ali W; Tulbah M; Imtiaz F
    Genes (Basel); 2022 Sep; 13(10):. PubMed ID: 36292572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stage specific requirement of Gfrα1 in the ureteric epithelium during kidney development.
    Keefe Davis T; Hoshi M; Jain S
    Mech Dev; 2013; 130(9-10):506-18. PubMed ID: 23542432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel loss of function variants in FRAS1 AND FREM2 underlie renal agenesis in consanguineous families.
    Al-Hamed MH; Sayer JA; Alsahan N; Tulbah M; Kurdi W; Ambusaidi Q; Ali W; Imtiaz F
    J Nephrol; 2021 Jun; 34(3):893-900. PubMed ID: 32643034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical Exome Sequencing Identifies a Novel Mutation of the
    Wang A; Ji B; Wu F; Zhao X
    Genet Test Mol Biomarkers; 2020 Aug; 24(8):520-526. PubMed ID: 32598191
    [No Abstract]   [Full Text] [Related]  

  • 10. Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans.
    Humbert C; Silbermann F; Morar B; Parisot M; Zarhrate M; Masson C; Tores F; Blanchet P; Perez MJ; Petrov Y; Khau Van Kien P; Roume J; Leroy B; Gribouval O; Kalaydjieva L; Heidet L; Salomon R; Antignac C; Benmerah A; Saunier S; Jeanpierre C
    Am J Hum Genet; 2014 Feb; 94(2):288-94. PubMed ID: 24439109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic study of severe fetal anomalies and discovery of GREB1L mutations in renal agenesis.
    Boissel S; Fallet-Bianco C; Chitayat D; Kremer V; Nassif C; Rypens F; Delrue MA; Dal Soglio D; Oligny LL; Patey N; Flori E; Cloutier M; Dyment D; Campeau P; Karalis A; Nizard S; Fraser WD; Audibert F; Lemyre E; Rouleau GA; Hamdan FF; Kibar Z; Michaud JL
    Genet Med; 2018 Jul; 20(7):745-753. PubMed ID: 29261186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homozygous WNT9B variants in two families with bilateral renal agenesis/hypoplasia/dysplasia.
    Lemire G; Zheng B; Ediae GU; Zou R; Bhola PT; Chisholm C; de Nanassy J; Lo B; Wang C; Shril S; El Desoky S; Shalaby M; Kari JA; Wang X; ; Kernohan KD; Boycott KM; Hildebrandt F; Sawyer SL
    Am J Med Genet A; 2021 Oct; 185(10):3005-3011. PubMed ID: 34145744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exome-wide Association Study Identifies GREB1L Mutations in Congenital Kidney Malformations.
    Sanna-Cherchi S; Khan K; Westland R; Krithivasan P; Fievet L; Rasouly HM; Ionita-Laza I; Capone VP; Fasel DA; Kiryluk K; Kamalakaran S; Bodria M; Otto EA; Sampson MG; Gillies CE; Vega-Warner V; Vukojevic K; Pediaditakis I; Makar GS; Mitrotti A; Verbitsky M; Martino J; Liu Q; Na YJ; Goj V; Ardissino G; Gigante M; Gesualdo L; Janezcko M; Zaniew M; Mendelsohn CL; Shril S; Hildebrandt F; van Wijk JAE; Arapovic A; Saraga M; Allegri L; Izzi C; Scolari F; Tasic V; Ghiggeri GM; Latos-Bielenska A; Materna-Kiryluk A; Mane S; Goldstein DB; Lifton RP; Katsanis N; Davis EE; Gharavi AG
    Am J Hum Genet; 2017 Nov; 101(5):789-802. PubMed ID: 29100090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal agenesis-related genes are associated with Herlyn-Werner-Wunderlich syndrome.
    Li L; Chu C; Li S; Lu D; Zheng P; Sheng J; Luo LJ; Wu X; Zhang YD; Yin C; Duan AH
    Fertil Steril; 2021 Nov; 116(5):1360-1369. PubMed ID: 34311961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-exome sequencing identifies a GREB1L variant in a three-generation family with Müllerian and renal agenesis: a novel candidate gene in Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. A case report.
    Herlin MK; Le VQ; Højland AT; Ernst A; Okkels H; Petersen AC; Petersen MB; Pedersen IS
    Hum Reprod; 2019 Sep; 34(9):1838-1846. PubMed ID: 31424080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renal Hypodysplasia/Aplasia 3 Caused by a Rare Variant of GREB1L With Incomplete Penetrance in a Chinese Family.
    Fan L; Shen G; Liu M; Liang Y; Yao J; Ding Z; Li Z; Feng X; Zhang J; Shen X
    Urology; 2024 Mar; 185():49-53. PubMed ID: 38309594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association Between RET (rs1800860) and GFRA1 (rs45568534, rs8192663, rs181595401, rs7090693, and rs2694770) Variants and Kidney Size in Healthy Newborns.
    Kaczmarczyk M; Loniewska B; Kuprjanowicz A; Binczak-Kuleta A; Goracy I; Ryder M; Taryma-Lesniak O; Ciechanowicz A
    Genet Test Mol Biomarkers; 2016 Oct; 20(10):624-628. PubMed ID: 27533506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal aplasia in humans is associated with RET mutations.
    Skinner MA; Safford SD; Reeves JG; Jackson ME; Freemerman AJ
    Am J Hum Genet; 2008 Feb; 82(2):344-51. PubMed ID: 18252215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A null founder variant in NPNT, encoding nephronectin, causes autosomal recessive renal agenesis.
    Al-Hamed MH; Altuwaijri N; Alsahan N; Ali W; Abdulwahab F; Alzahrani F; Majrashi N; Alkuraya FS
    Clin Genet; 2022 Jul; 102(1):61-65. PubMed ID: 35246978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects.
    Jeanpierre C; Macé G; Parisot M; Morinière V; Pawtowsky A; Benabou M; Martinovic J; Amiel J; Attié-Bitach T; Delezoide AL; Loget P; Blanchet P; Gaillard D; Gonzales M; Carpentier W; Nitschke P; Tores F; Heidet L; Antignac C; Salomon R;
    J Med Genet; 2011 Jul; 48(7):497-504. PubMed ID: 21490379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.