BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 34737151)

  • 1. Bombyx mori-derived aldo-keto reductase AKR2E8 detoxifies aldehydes present in mulberry leaves.
    Yamamoto K; Endo S
    Chem Biol Interact; 2022 Jan; 351():109717. PubMed ID: 34737151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel aldo-keto reductase AKR2E9 regulates aldehyde content in the midgut and antennae of the silkworm (Bombyx mori).
    Yamamoto K; Endo S
    Arch Insect Biochem Physiol; 2023 Jan; 112(1):e21979. PubMed ID: 36283966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional characterization of an aldose reductase (bmALD1) obtained from the silkworm Bombyx mori.
    Yamamoto K; Yamaguchi M; Endo S
    Insect Mol Biol; 2020 Oct; 29(5):490-497. PubMed ID: 32681683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel silkworm (Bombyx mori) sulfotransferase swSULT ST3 is involved in metabolism of polyphenols from mulberry leaves.
    Yamamoto K; Yamada N; Endo S; Kurogi K; Sakakibara Y; Suiko M
    PLoS One; 2022; 17(8):e0270804. PubMed ID: 35925958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification, characterization, and crystal structure of an aldo-keto reductase (AKR2E4) from the silkworm Bombyx mori.
    Yamamoto K; Wilson DK
    Arch Biochem Biophys; 2013 Oct; 538(2):156-63. PubMed ID: 24012638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characterization of an aldo-keto reductase (AKR2E5) from the silkworm Bombyx mori.
    Yamamoto K; Higashiura A; Suzuki M; Shiotsuki T; Sugahara R; Fujii T; Nakagawa A
    Biochem Biophys Res Commun; 2016 May; 474(1):104-110. PubMed ID: 27103441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of AKR1B16, a novel mouse aldo-keto reductase.
    Giménez-Dejoz J; Weber S; Barski OA; Möller G; Adamski J; Parés X; Porté S; Farrés J
    Chem Biol Interact; 2017 Oct; 276():182-193. PubMed ID: 28322781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members.
    O'connor T; Ireland LS; Harrison DJ; Hayes JD
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):487-504. PubMed ID: 10510318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and characterization of AKR4C14, a rice aldo-keto reductase, from Thai Jasmine rice.
    Narawongsanont R; Kabinpong S; Auiyawong B; Tantitadapitak C
    Protein J; 2012 Jan; 31(1):35-42. PubMed ID: 22101802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and functional characterization of the dual oxidase (BmDuox) gene from the silkworm Bombyx mori.
    Hu X; Yang R; Zhang X; Chen L; Xiang X; Gong C; Wu X
    PLoS One; 2013; 8(8):e70118. PubMed ID: 23936382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering aldo-keto reductase 1B10 to mimic the distinct 1B15 topology and specificity towards inhibitors and substrates, including retinoids and steroids.
    Giménez-Dejoz J; Weber S; Fernández-Pardo Á; Möller G; Adamski J; Porté S; Parés X; Farrés J
    Chem Biol Interact; 2019 Jul; 307():186-194. PubMed ID: 31028727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of AKR4C15, a Novel Member of Aldo-Keto Reductase, in Comparison with Other Rice AKR(s).
    Auiyawong B; Narawongsanont R; Tantitadapitak C
    Protein J; 2017 Aug; 36(4):257-269. PubMed ID: 28699078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadening the repertoire of microbial aldo-keto reductases: cloning and characterization of AKR3B4 from Rhodotorula mucilaginosa LSL strain.
    Anello AL; Aguilera L; Kurina-Sanz M; Juri Ayub M; Mascotti ML
    Enzyme Microb Technol; 2020 Jan; 132():109415. PubMed ID: 31731965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and functional characterization of a novel aldo-keto reductase from Aloe vera.
    Jangra A; Chaturvedi S; Sihag S; Sharma G; Tiwari S; Chhokar V
    Planta; 2023 Oct; 258(6):107. PubMed ID: 37897513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Aldo-Keto Reductases for the Biocatalytic Conversion of 3-Hydroxybutanal to 1,3-Butanediol: Structural and Biochemical Studies.
    Kim T; Flick R; Brunzelle J; Singer A; Evdokimova E; Brown G; Joo JC; Minasov GA; Anderson WF; Mahadevan R; Savchenko A; Yakunin AF
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The aldo-keto reductases (AKRs): Overview.
    Penning TM
    Chem Biol Interact; 2015 Jun; 234():236-46. PubMed ID: 25304492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate specificity and catalytic efficiency of aldo-keto reductases with phospholipid aldehydes.
    Spite M; Baba SP; Ahmed Y; Barski OA; Nijhawan K; Petrash JM; Bhatnagar A; Srivastava S
    Biochem J; 2007 Jul; 405(1):95-105. PubMed ID: 17381426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative anatomy of the aldo-keto reductase superfamily.
    Jez JM; Bennett MJ; Schlegel BP; Lewis M; Penning TM
    Biochem J; 1997 Sep; 326 ( Pt 3)(Pt 3):625-36. PubMed ID: 9307009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rat aldose reductase-like protein (AKR1B14) efficiently reduces the lipid peroxidation product 4-oxo-2-nonenal.
    Endo S; Matsunaga T; Fujita A; Tajima K; El-Kabbani O; Hara A
    Biol Pharm Bull; 2010; 33(11):1886-90. PubMed ID: 21048316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Transcriptome Analysis Identifies Key Defense Genes and Mechanisms in Mulberry (
    Zhang X; Zhu X; Zhang Y; Wu Z; Fan S; Zhang L
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.