BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 34737343)

  • 21. Mechanisms of prion-induced modifications in membrane transport properties: implications for signal transduction and neurotoxicity.
    Kourie JI
    Chem Biol Interact; 2001 Oct; 138(1):1-26. PubMed ID: 11640912
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular prion protein gene polymorphisms linked to differential scrapie susceptibility correlate with distinct residue connectivity between secondary structure elements.
    Soto P; Claflin IA; Bursott AL; Schwab-McCoy AD; Bartz JC
    J Biomol Struct Dyn; 2021 Jan; 39(1):129-139. PubMed ID: 31900058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Structure of the Infectious Prion Protein and Its Propagation.
    Requena JR; Wille H
    Prog Mol Biol Transl Sci; 2017; 150():341-359. PubMed ID: 28838667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prion protein amyloid formation under native-like conditions involves refolding of the C-terminal alpha-helical domain.
    Cobb NJ; Apetri AC; Surewicz WK
    J Biol Chem; 2008 Dec; 283(50):34704-11. PubMed ID: 18930924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A valine-to-lysine substitution at position 210 induces structural conversion of prion protein into a β-sheet rich oligomer.
    Kakuda K; Yamaguchi KI; Kuwata K; Honda R
    Biochem Biophys Res Commun; 2018 Nov; 506(1):81-86. PubMed ID: 30336980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of prion protein glycosylation in replication of human prions by protein misfolding cyclic amplification.
    Camacho MV; Telling G; Kong Q; Gambetti P; Notari S
    Lab Invest; 2019 Nov; 99(11):1741-1748. PubMed ID: 31249376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prion protein and its conformational conversion: a structural perspective.
    Surewicz WK; Apostol MI
    Top Curr Chem; 2011; 305():135-67. PubMed ID: 21630136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. β-cleavage of the human prion protein impacts Cu(II) coordination at its non-octarepeat region.
    Sánchez-López C; Quintanar L
    J Inorg Biochem; 2022 Mar; 228():111686. PubMed ID: 34929540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zinc significantly changes the aggregation pathway and the conformation of aggregates of human prion protein.
    Pan K; Yi CW; Chen J; Liang Y
    Biochim Biophys Acta; 2015 Aug; 1854(8):907-18. PubMed ID: 25922234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The N-Terminal Polybasic Region of Prion Protein Is Crucial in Prion Pathogenesis Independently of the Octapeptide Repeat Region.
    Das NR; Miyata H; Hara H; Chida J; Uchiyama K; Masujin K; Watanabe H; Kondoh G; Sakaguchi S
    Mol Neurobiol; 2020 Feb; 57(2):1203-1216. PubMed ID: 31707632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reversion of prion protein conformational changes by synthetic beta-sheet breaker peptides.
    Soto C; Kascsak RJ; Saborío GP; Aucouturier P; Wisniewski T; Prelli F; Kascsak R; Mendez E; Harris DA; Ironside J; Tagliavini F; Carp RI; Frangione B
    Lancet; 2000 Jan; 355(9199):192-7. PubMed ID: 10675119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transition of the prion protein from a structured cellular form (PrP
    Baral PK; Yin J; Aguzzi A; James MNG
    Protein Sci; 2019 Dec; 28(12):2055-2063. PubMed ID: 31583788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preventing misfolding of the prion protein by trimethylamine N-oxide.
    Bennion BJ; DeMarco ML; Daggett V
    Biochemistry; 2004 Oct; 43(41):12955-63. PubMed ID: 15476389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copper alters aggregation behavior of prion protein and induces novel interactions between its N- and C-terminal regions.
    Thakur AK; Srivastava AK; Srinivas V; Chary KVR; Rao CM
    J Biol Chem; 2011 Nov; 286(44):38533-38545. PubMed ID: 21900252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular architecture of human prion protein amyloid: a parallel, in-register beta-structure.
    Cobb NJ; Sönnichsen FD; McHaourab H; Surewicz WK
    Proc Natl Acad Sci U S A; 2007 Nov; 104(48):18946-51. PubMed ID: 18025469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The mechanisms of humic substances self-assembly with biological molecules: The case study of the prion protein.
    Giachin G; Nepravishta R; Mandaliti W; Melino S; Margon A; Scaini D; Mazzei P; Piccolo A; Legname G; Paci M; Leita L
    PLoS One; 2017; 12(11):e0188308. PubMed ID: 29161325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange.
    Lu X; Wintrode PL; Surewicz WK
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1510-5. PubMed ID: 17242357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The cellular and pathologic prion protein.
    Gill AC; Castle AR
    Handb Clin Neurol; 2018; 153():21-44. PubMed ID: 29887138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural transitions in full-length human prion protein detected by xenon as probe and spin labeling of the N-terminal domain.
    Narayanan SP; Nair DG; Schaal D; Barbosa de Aguiar M; Wenzel S; Kremer W; Schwarzinger S; Kalbitzer HR
    Sci Rep; 2016 Jun; 6():28419. PubMed ID: 27341298
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative analysis of the human and chicken prion protein copper binding regions at pH 6.5.
    Redecke L; Meyer-Klaucke W; Koker M; Clos J; Georgieva D; Genov N; Echner H; Kalbacher H; Perbandt M; Bredehorst R; Voelter W; Betzel C
    J Biol Chem; 2005 Apr; 280(14):13987-92. PubMed ID: 15684434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.