BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 34737387)

  • 1. Features and applications of haplotypes in crop breeding.
    Bhat JA; Yu D; Bohra A; Ganie SA; Varshney RK
    Commun Biol; 2021 Nov; 4(1):1266. PubMed ID: 34737387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic resources in plant breeding for sustainable agriculture.
    Thudi M; Palakurthi R; Schnable JC; Chitikineni A; Dreisigacker S; Mace E; Srivastava RK; Satyavathi CT; Odeny D; Tiwari VK; Lam HM; Hong YB; Singh VK; Li G; Xu Y; Chen X; Kaila S; Nguyen H; Sivasankar S; Jackson SA; Close TJ; Shubo W; Varshney RK
    J Plant Physiol; 2021 Feb; 257():153351. PubMed ID: 33412425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Future Crops: Genomics-Assisted Breeding Comes of Age.
    Varshney RK; Bohra A; Yu J; Graner A; Zhang Q; Sorrells ME
    Trends Plant Sci; 2021 Jun; 26(6):631-649. PubMed ID: 33893045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can genomics deliver climate-change ready crops?
    Varshney RK; Singh VK; Kumar A; Powell W; Sorrells ME
    Curr Opin Plant Biol; 2018 Oct; 45(Pt B):205-211. PubMed ID: 29685733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in artificial intelligence, mechanistic models, and speed breeding offer exciting opportunities for precise and accelerated genomics-assisted breeding.
    Bhat JA; Feng X; Mir ZA; Raina A; Siddique KHM
    Physiol Plant; 2023; 175(4):e13969. PubMed ID: 37401892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.
    Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK
    J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes.
    Jha UC; Sharma KD; Nayyar H; Parida SK; Siddique KHM
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetics and breeding for climate change in Orphan crops.
    Kamenya SN; Mikwa EO; Song B; Odeny DA
    Theor Appl Genet; 2021 Jun; 134(6):1787-1815. PubMed ID: 33486565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QTLian breeding for climate resilience in cereals: progress and prospects.
    Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK
    Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haplotype-based breeding: A new insight in crop improvement.
    Sivabharathi RC; Rajagopalan VR; Suresh R; Sudha M; Karthikeyan G; Jayakanthan M; Raveendran M
    Plant Sci; 2024 May; 346():112129. PubMed ID: 38763472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crop breeding for a changing climate: integrating phenomics and genomics with bioinformatics.
    Marsh JI; Hu H; Gill M; Batley J; Edwards D
    Theor Appl Genet; 2021 Jun; 134(6):1677-1690. PubMed ID: 33852055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic interventions for sustainable agriculture.
    Bohra A; Chand Jha U; Godwin ID; Kumar Varshney R
    Plant Biotechnol J; 2020 Dec; 18(12):2388-2405. PubMed ID: 32875704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated Genomic Selection for Accelerating Breeding Programs of Climate-Smart Cereals.
    Sinha D; Maurya AK; Abdi G; Majeed M; Agarwal R; Mukherjee R; Ganguly S; Aziz R; Bhatia M; Majgaonkar A; Seal S; Das M; Banerjee S; Chowdhury S; Adeyemi SB; Chen JT
    Genes (Basel); 2023 Jul; 14(7):. PubMed ID: 37510388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomics and breeding innovations for enhancing genetic gain for climate resilience and nutrition traits.
    Sinha P; Singh VK; Bohra A; Kumar A; Reif JC; Varshney RK
    Theor Appl Genet; 2021 Jun; 134(6):1829-1843. PubMed ID: 34014373
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Singh D; Chaudhary P; Taunk J; Singh CK; Singh D; Tomar RSS; Aski M; Konjengbam NS; Raje RS; Singh S; Sengar RS; Yadav RK; Pal M
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing Crop Wild Diversity for Climate Change Adaptation.
    Cortés AJ; López-Hernández F
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34065368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redesigning crop varieties to win the race between climate change and food security.
    Pixley KV; Cairns JE; Lopez-Ridaura S; Ojiewo CO; Dawud MA; Drabo I; Mindaye T; Nebie B; Asea G; Das B; Daudi H; Desmae H; Batieno BJ; Boukar O; Mukankusi CTM; Nkalubo ST; Hearne SJ; Dhugga KS; Gandhi H; Snapp S; Zepeda-Villarreal EA
    Mol Plant; 2023 Oct; 16(10):1590-1611. PubMed ID: 37674314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global agricultural intensification during climate change: a role for genomics.
    Abberton M; Batley J; Bentley A; Bryant J; Cai H; Cockram J; de Oliveira AC; Cseke LJ; Dempewolf H; De Pace C; Edwards D; Gepts P; Greenland A; Hall AE; Henry R; Hori K; Howe GT; Hughes S; Humphreys M; Lightfoot D; Marshall A; Mayes S; Nguyen HT; Ogbonnaya FC; Ortiz R; Paterson AH; Tuberosa R; Valliyodan B; Varshney RK; Yano M
    Plant Biotechnol J; 2016 Apr; 14(4):1095-8. PubMed ID: 26360509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.