These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 34737399)
1. Mining for encrypted peptide antibiotics in the human proteome. Torres MDT; Melo MCR; Flowers L; Crescenzi O; Notomista E; de la Fuente-Nunez C Nat Biomed Eng; 2022 Jan; 6(1):67-75. PubMed ID: 34737399 [TBL] [Abstract][Full Text] [Related]
2. Mining human microbiomes reveals an untapped source of peptide antibiotics. Torres MDT; Brooks EF; Cesaro A; Sberro H; Gill MO; Nicolaou C; Bhatt AS; de la Fuente-Nunez C Cell; 2024 Sep; 187(19):5453-5467.e15. PubMed ID: 39163860 [TBL] [Abstract][Full Text] [Related]
3. Machine Learning-Driven Discovery and Evaluation of Antimicrobial Peptides from Song J; Liu K; Jin X; Huang K; Fu S; Yi W; Cai Y; Yu Z; Mao F; Zhang Y Mar Drugs; 2024 Aug; 22(9):. PubMed ID: 39330266 [TBL] [Abstract][Full Text] [Related]
4. Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning. Maasch JRMA; Torres MDT; Melo MCR; de la Fuente-Nunez C Cell Host Microbe; 2023 Aug; 31(8):1260-1274.e6. PubMed ID: 37516110 [TBL] [Abstract][Full Text] [Related]
5. Deep-learning-enabled antibiotic discovery through molecular de-extinction. Wan F; Torres MDT; Peng J; de la Fuente-Nunez C Nat Biomed Eng; 2024 Jul; 8(7):854-871. PubMed ID: 38862735 [TBL] [Abstract][Full Text] [Related]
6. Antimicrobial peptides: triumphs and challenges. Zeng ZZ; Huang SH; Alezra V; Wan Y Future Med Chem; 2021 Aug; 13(16):1313-1315. PubMed ID: 34148371 [No Abstract] [Full Text] [Related]
7. Synthetic Antibiotic Derived from Sequences Encrypted in a Protein from Human Plasma. Cesaro A; Torres MDT; Gaglione R; Dell'Olmo E; Di Girolamo R; Bosso A; Pizzo E; Haagsman HP; Veldhuizen EJA; de la Fuente-Nunez C; Arciello A ACS Nano; 2022 Feb; 16(2):1880-1895. PubMed ID: 35112568 [TBL] [Abstract][Full Text] [Related]
8. Antimicrobial therapy based on self-assembling peptides. Wang Y; Zhang Y; Su R; Wang Y; Qi W J Mater Chem B; 2024 May; 12(21):5061-5075. PubMed ID: 38726712 [TBL] [Abstract][Full Text] [Related]
9. Membrane mechanism of temporin-1CEc, an antimicrobial peptide isolated from the skin secretions of Rana chensinensis, and its systemic analogs. Ji F; Zhao Y; Jiang F; Shang D Bioorg Chem; 2022 Feb; 119():105544. PubMed ID: 34953322 [TBL] [Abstract][Full Text] [Related]
10. Van Moll L; De Smet J; Paas A; Tegtmeier D; Vilcinskas A; Cos P; Van Campenhout L Microbiol Spectr; 2022 Feb; 10(1):e0166421. PubMed ID: 34985302 [TBL] [Abstract][Full Text] [Related]
11. Cell-Penetrating Antimicrobial Peptides Derived from an Atypical Staphylococcal δ-Toxin. Deeyagahage K; Ruzzini A Microbiol Spectr; 2021 Dec; 9(3):e0158421. PubMed ID: 34937169 [TBL] [Abstract][Full Text] [Related]
12. An Efficient Evaluation System Accelerates α-Helical Antimicrobial Peptide Discovery and Its Application to Global Human Genome Mining. Liu L; Wang C; Zhang M; Zhang Z; Wu Y; Zhang Y Front Microbiol; 2022; 13():870361. PubMed ID: 35547131 [TBL] [Abstract][Full Text] [Related]
13. Human gut metagenomic mining reveals an untapped source of peptide antibiotics. Torres MDT; Brooks E; Cesaro A; Sberro H; Nicolaou C; Bhatt AS; de la Fuente-Nunez C bioRxiv; 2023 Sep; ():. PubMed ID: 37693399 [TBL] [Abstract][Full Text] [Related]
14. Discovery of antimicrobial peptides in the global microbiome with machine learning. Santos-Júnior CD; Torres MDT; Duan Y; Rodríguez Del Río Á; Schmidt TSB; Chong H; Fullam A; Kuhn M; Zhu C; Houseman A; Somborski J; Vines A; Zhao XM; Bork P; Huerta-Cepas J; de la Fuente-Nunez C; Coelho LP Cell; 2024 Jul; 187(14):3761-3778.e16. PubMed ID: 38843834 [TBL] [Abstract][Full Text] [Related]
15. Highly selective performance of rationally designed antimicrobial peptides based on ponericin-W1. Lv S; Wang J; You R; Liu S; Ding Y; Hadianamrei R; Tomeh MA; Pan F; Cai Z; Zhao X Biomater Sci; 2022 Aug; 10(17):4848-4865. PubMed ID: 35861280 [TBL] [Abstract][Full Text] [Related]
16. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance? Zharkova MS; Orlov DS; Golubeva OY; Chakchir OB; Eliseev IE; Grinchuk TM; Shamova OV Front Cell Infect Microbiol; 2019; 9():128. PubMed ID: 31114762 [TBL] [Abstract][Full Text] [Related]
17. Rational design and synthesis of Oreoch-2 analogues as efficient broad-spectrum antimicrobial peptides. Zhang N; Gu X; Song D; Zhang P; Zhang N; Chen W; Ji S; Qi Y; Ma S Bioorg Chem; 2022 Feb; 119():105583. PubMed ID: 34971943 [TBL] [Abstract][Full Text] [Related]
18. Design of antimicrobial and cytolytic peptides by computational analysis of bacterial, algal, and invertebrate proteomes. Duque-Salazar G; Mendez-Otalvaro E; Ceballos-Arroyo AM; Orduz S Amino Acids; 2020 Oct; 52(10):1403-1412. PubMed ID: 33063186 [TBL] [Abstract][Full Text] [Related]
19. The Rhodamine B-encrypted Vipericidin Peptide, RhoB-Ctn[1-9], Displays In vitro Antimicrobial Activity Against Opportunistic Bacteria and Yeasts. Lima HVD; Dos Santos TMC; de Sousa Silva MMA; da Silva Albuquerque JV; Melo LM; de Figueirêdo Freitas VJ; Rádis-Baptista G Curr Pharm Biotechnol; 2022; 23(2):172-179. PubMed ID: 33749557 [TBL] [Abstract][Full Text] [Related]
20. Rescuing humanity by antimicrobial peptides against colistin-resistant bacteria. Moghadam MT; Mojtahedi A; Moghaddam MM; Fasihi-Ramandi M; Mirnejad R Appl Microbiol Biotechnol; 2022 Jun; 106(11):3879-3893. PubMed ID: 35604438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]