BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 34737712)

  • 1. The Skeletal Cellular and Molecular Underpinning of the Murine Hindlimb Unloading Model.
    Garg P; Strigini M; Peurière L; Vico L; Iandolo D
    Front Physiol; 2021; 12():749464. PubMed ID: 34737712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential bone adaptation to mechanical unloading and reloading in young, old, and osteocyte deficient mice.
    Cunningham HC; Orr S; Murugesh DK; Hsia AW; Osipov B; Go L; Wu PH; Wong A; Loots GG; Kazakia GJ; Christiansen BA
    Bone; 2023 Feb; 167():116646. PubMed ID: 36529445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-dependent bone loss and recovery during hindlimb unloading and subsequent reloading in rats.
    Cunningham HC; West DWD; Baehr LM; Tarke FD; Baar K; Bodine SC; Christiansen BA
    BMC Musculoskelet Disord; 2018 Jul; 19(1):223. PubMed ID: 30021585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disuse Osteoporosis: Clinical and Mechanistic Insights.
    Rolvien T; Amling M
    Calcif Tissue Int; 2022 May; 110(5):592-604. PubMed ID: 33738515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blocking glucocorticoid signaling in osteoblasts and osteocytes prevents mechanical unloading-induced cortical bone loss.
    Yang J; Li J; Cui X; Li W; Xue Y; Shang P; Zhang H
    Bone; 2020 Jan; 130():115108. PubMed ID: 31704341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connexin 43 deficiency desensitizes bone to the effects of mechanical unloading through modulation of both arms of bone remodeling.
    Lloyd SA; Loiselle AE; Zhang Y; Donahue HJ
    Bone; 2013 Nov; 57(1):76-83. PubMed ID: 23891909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse.
    Shirazi-Fard Y; Kupke JS; Bloomfield SA; Hogan HA
    Bone; 2013 Jan; 52(1):433-43. PubMed ID: 23017660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential responses of mechanosensitive osteocyte proteins in fore- and hindlimbs of hindlimb-unloaded rats.
    Metzger CE; Brezicha JE; Elizondo JP; Narayanan SA; Hogan HA; Bloomfield SA
    Bone; 2017 Dec; 105():26-34. PubMed ID: 28782619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of proton irradiation followed by hindlimb unloading on bone in mature mice: a model of long-duration spaceflight.
    Lloyd SA; Bandstra ER; Willey JS; Riffle SE; Tirado-Lee L; Nelson GA; Pecaut MJ; Bateman TA
    Bone; 2012 Oct; 51(4):756-64. PubMed ID: 22789684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Previous exposure to simulated microgravity does not exacerbate bone loss during subsequent exposure in the proximal tibia of adult rats.
    Shirazi-Fard Y; Anthony RA; Kwaczala AT; Judex S; Bloomfield SA; Hogan HA
    Bone; 2013 Oct; 56(2):461-73. PubMed ID: 23871849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteocyte network; a negative regulatory system for bone mass augmented by the induction of Rankl in osteoblasts and Sost in osteocytes at unloading.
    Moriishi T; Fukuyama R; Ito M; Miyazaki T; Maeno T; Kawai Y; Komori H; Komori T
    PLoS One; 2012; 7(6):e40143. PubMed ID: 22768243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Wnt Inhibitor Sclerostin Is Up-regulated by Mechanical Unloading in Osteocytes in Vitro.
    Spatz JM; Wein MN; Gooi JH; Qu Y; Garr JL; Liu S; Barry KJ; Uda Y; Lai F; Dedic C; Balcells-Camps M; Kronenberg HM; Babij P; Pajevic PD
    J Biol Chem; 2015 Jul; 290(27):16744-58. PubMed ID: 25953900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-RANKL monoclonal antibody and bortezomib prevent mechanical unloading-induced bone loss.
    Ding Y; Cui Y; Yang X; Wang X; Tian G; Peng J; Wu B; Tang L; Cui CP; Zhang L
    J Bone Miner Metab; 2021 Nov; 39(6):974-983. PubMed ID: 34212247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimicking the effects of spaceflight on bone: Combined effects of disuse and chronic low-dose rate radiation exposure on bone mass in mice.
    Yu K; Doherty AH; Genik PC; Gookin SE; Roteliuk DM; Wojda SJ; Jiang ZS; McGee-Lawrence ME; Weil MM; Donahue SW
    Life Sci Space Res (Amst); 2017 Nov; 15():62-68. PubMed ID: 29198315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective Effects of Controlled Mechanical Loading of Bone in C57BL6/J Mice Subject to Disuse.
    DeLong A; Friedman MA; Tucker SM; Krause AR; Kunselman A; Donahue HJ; Lewis GS
    JBMR Plus; 2020 Mar; 4(3):e10322. PubMed ID: 32161839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different impact of short-term and long-term hindlimb disuse on bone homeostasis.
    Gao M; Dong C; Chen Z; Jiang R; Shaw P; Gao W; Sun Y
    Gene; 2024 Aug; 918():148457. PubMed ID: 38641071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role for beta1 integrins in cortical osteocytes during acute musculoskeletal disuse.
    Phillips JA; Almeida EA; Hill EL; Aguirre JI; Rivera MF; Nachbandi I; Wronski TJ; van der Meulen MC; Globus RK
    Matrix Biol; 2008 Sep; 27(7):609-18. PubMed ID: 18619537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hindlimb unloading causes regional loading-dependent changes in osteocyte inflammatory cytokines that are modulated by exogenous irisin treatment.
    Metzger CE; Anand Narayanan S; Phan PH; Bloomfield SA
    NPJ Microgravity; 2020; 6():28. PubMed ID: 33083525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading.
    Spatz JM; Ellman R; Cloutier AM; Louis L; van Vliet M; Suva LJ; Dwyer D; Stolina M; Ke HZ; Bouxsein ML
    J Bone Miner Res; 2013 Apr; 28(4):865-74. PubMed ID: 23109229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spaceflight and hindlimb suspension disuse models in mice.
    Milstead JR; Simske SJ; Bateman TA
    Biomed Sci Instrum; 2004; 40():105-10. PubMed ID: 15133943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.