These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34737817)

  • 1. Frequency Modulation System and Bone Conduction Hearing Aid: Electroacoustic Verification.
    Paccola ECM; Costa Filho OA; Jacob RTS
    Int Arch Otorhinolaryngol; 2021 Oct; 25(4):e483-e489. PubMed ID: 34737817
    [No Abstract]   [Full Text] [Related]  

  • 2. Verification Protocol for Signal Transparency Using the Cochlear Mini-Microphone 2+ and Digital Modulation Transmitter and Receiver with Cochlear Implants.
    Sousa R; Nair E; Wannagot S
    J Am Acad Audiol; 2019 Mar; 30(3):198-207. PubMed ID: 30461401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proposed electroacoustic test protocol for personal FM receivers coupled to cochlear implant sound processors.
    Schafer EC; Musgrave E; Momin S; Sandrock C; Romine D
    J Am Acad Audiol; 2013; 24(10):941-54. PubMed ID: 24384080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Verification of a Proposed Clinical Electroacoustic Test Protocol for Personal Digital Modulation Receivers Coupled to Cochlear Implant Sound Processors.
    Nair EL; Sousa R; Wannagot S
    J Am Acad Audiol; 2017; 28(7):625-635. PubMed ID: 28722645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroacoustic verification of frequency modulation systems in cochlear implant users.
    Fidêncio VLD; Jacob RTS; Tanamati LF; Bucuvic ÉC; Moret ALM
    Braz J Otorhinolaryngol; 2019; 85(2):162-169. PubMed ID: 29339025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Novel Bone Conduction Verification Tool Using a Surface Microphone: Validation With Percutaneous Bone Conduction Users.
    Hodgetts W; Scott D; Maas P; Westover L
    Ear Hear; 2018; 39(6):1157-1164. PubMed ID: 29578886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experiments with classroom FM amplification.
    Boothroyd A; Iglehart F
    Ear Hear; 1998 Jun; 19(3):202-17. PubMed ID: 9657595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroacoustic evaluation of frequency-modulated receivers interfaced with personal hearing aids.
    Schafer EC; Thibodeau LM; Whalen HS; Overson GJ
    Lang Speech Hear Serv Sch; 2007 Oct; 38(4):315-26. PubMed ID: 17890512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effects of FM and Hearing Aid Microphone Settings, FM Gain, and Ambient Noise Levels on SNR at the Tympanic Membrane.
    Norrix LW; Camarota K; Harris FP; Dean J
    J Am Acad Audiol; 2016 Feb; 27(2):117-25. PubMed ID: 26905531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some effects of FM-system coupling on hearing aid characteristics.
    Hawkins DB; Schum DJ
    J Speech Hear Disord; 1985 May; 50(2):132-41. PubMed ID: 3990259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effects of Manufacturer's Prefit and Real-Ear Fitting on the Predicted Speech Perception of Children with Severe to Profound Hearing Loss.
    Quar TK; Umat C; Chew YY
    J Am Acad Audiol; 2019 May; 30(5):346-356. PubMed ID: 30461383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fitting Assistive Technology for People with Hearing Loss: The Importance of Remote Microphone Systems' Electroacoustic Verification.
    Jacob RTS; Paccola ECM; Bucuvic ÉC; Salgado MH
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recognition performance for four combinations of FM system and hearing aid microphone signals in adverse listening conditions.
    Pittman AL; Lewis DE; Hoover BM; Stelmachowicz PG
    Ear Hear; 1999 Aug; 20(4):279-89. PubMed ID: 10466564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroacoustic characteristics of personal FM systems.
    Hawkins DB; Van Tasell DJ
    J Speech Hear Disord; 1982 Nov; 47(4):355-62. PubMed ID: 7186576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Objective verification of audibility in bone conduction devices.
    Persson AC; Håkansson B; Fredén Jansson KJ; Reinfeldt S; Eeg-Olofsson M
    Int J Audiol; 2024 Apr; ():1-7. PubMed ID: 38602203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Difference between the default telecoil (t-coil) and programmed microphone frequency response in behind-the-ear (BTE) hearing aids.
    Putterman DB; Valente M
    J Am Acad Audiol; 2012 May; 23(5):366-78. PubMed ID: 22533979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consistency of electroacoustic characteristics across components of FM systems.
    Thibodeau LM; Saucedo KA
    J Speech Hear Res; 1991 Jun; 34(3):628-35. PubMed ID: 2072687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Use of a Novel, Nonsurgical Bone Conduction Hearing Aid System for the Treatment of Conductive Hearing Loss.
    Kuthubutheen J; Broadbent C; Marino R; Távora-Vieira D
    Otol Neurotol; 2020 Aug; 41(7):948-955. PubMed ID: 32282787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Audiological and subjective outcomes of 100 implanted transcutaneous bone conduction devices and preoperative bone conduction hearing aids in patients with bilateral microtia-atresia.
    Yang J; Chen P; Zhao C; Liu Y; Gao M; Huang Z; Zhao S
    Acta Otolaryngol; 2020 Aug; 140(8):675-681. PubMed ID: 32432498
    [No Abstract]   [Full Text] [Related]  

  • 20. Electromagnetic versus electrical coupling of personal frequency modulation (FM) receivers to cochlear implant sound processors.
    Schafer EC; Romine D; Musgrave E; Momin S; Huynh C
    J Am Acad Audiol; 2013; 24(10):927-40. PubMed ID: 24384079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.