These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 34738018)

  • 1. Coordinating Shared Tasks in Human-Robot Collaboration by Commands.
    Angleraud A; Mehman Sefat A; Netzev M; Pieters R
    Front Robot AI; 2021; 8():734548. PubMed ID: 34738018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Understanding of Robot-Directed Speech Commands Using Sequence to Sequence With Noise Injection.
    Tada Y; Hagiwara Y; Tanaka H; Taniguchi T
    Front Robot AI; 2019; 6():144. PubMed ID: 33501159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward an Interactive Reinforcement Based Learning Framework for Human Robot Collaborative Assembly Processes.
    Akkaladevi SC; Plasch M; Maddukuri S; Eitzinger C; Pichler A; Rinner B
    Front Robot AI; 2018; 5():126. PubMed ID: 33501005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Unified Multimodal Interface for the RELAX High-Payload Collaborative Robot.
    Muratore L; Laurenzi A; De Luca A; Bertoni L; Torielli D; Baccelliere L; Del Bianco E; Tsagarakis NG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological Indicators of Fluency and Engagement during Sequential and Simultaneous Modes of Human-Robot Collaboration.
    Ramadurai S; Gutierrez C; Jeong H; Kim M
    IISE Trans Occup Ergon Hum Factors; 2024; 12(1-2):97-111. PubMed ID: 38047355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization method for human-robot command combinations of hexapod robot based on multi-objective constraints.
    Chen X; You B; Dong Z
    Front Neurorobot; 2024; 18():1393738. PubMed ID: 38644902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collaborating eye to eye: Effects of workplace design on the perception of dominance of collaboration robots.
    Arntz A; Straßmann C; Völker S; Eimler SC
    Front Robot AI; 2022; 9():999308. PubMed ID: 36237845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human-in-the-Loop Robot Control for Human-Robot Collaboration: HUMAN INTENTION ESTIMATION AND SAFE TRAJECTORY TRACKING CONTROL FOR COLLABORATIVE TASKS.
    Dani AP; Salehi I; Rotithor G; Trombetta D; Ravichandar H
    IEEE Control Syst; 2020 Dec; 40(6):29-56. PubMed ID: 35002195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Industrial Robot Control by Means of Gestures and Voice Commands in Off-Line and On-Line Mode.
    Kaczmarek W; Panasiuk J; Borys S; Banach P
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of Industrially-Oriented Human-Robot Speech Communication and Vision-Based Object Recognition.
    Rogowski A; Bieliszczuk K; Rapcewicz J
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33353038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferred Interaction Styles for Human-Robot Collaboration Vary Over Tasks With Different Action Types.
    Schulz R; Kratzer P; Toussaint M
    Front Neurorobot; 2018; 12():36. PubMed ID: 30022933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emotion-Driven Analysis and Control of Human-Robot Interactions in Collaborative Applications.
    Toichoa Eyam A; Mohammed WM; Martinez Lastra JL
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactive method research of dual mode information coordination integration for astronaut gesture and eye movement signals based on hybrid model.
    Zhuang H; Xia Y; Wang N; Li W; Dong L; Li B
    Sci China Technol Sci; 2023; 66(6):1717-1733. PubMed ID: 37288339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FMG- and RNN-Based Estimation of Motor Intention of Upper-Limb Motion in Human-Robot Collaboration.
    Anvaripour M; Khoshnam M; Menon C; Saif M
    Front Robot AI; 2020; 7():573096. PubMed ID: 33501334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Wearable IMU System for Flexible Teleoperation of a Collaborative Industrial Robot.
    Škulj G; Vrabič R; Podržaj P
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intention Understanding in Human-Robot Interaction Based on Visual-NLP Semantics.
    Li Z; Mu Y; Sun Z; Song S; Su J; Zhang J
    Front Neurorobot; 2020; 14():610139. PubMed ID: 33613223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Mixed-Perception Approach for Safe Human-Robot Collaboration in Industrial Automation.
    Mohammadi Amin F; Rezayati M; van de Venn HW; Karimpour H
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction-Based Human-Robot Collaboration in Assembly Tasks Using a Learning from Demonstration Model.
    Zhang Z; Peng G; Wang W; Chen Y; Jia Y; Liu S
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A data-driven approach for motion planning of industrial robots controlled by high-level motion commands.
    Hou S; Bdiwi M; Rashid A; Krusche S; Ihlenfeldt S
    Front Robot AI; 2022; 9():1030668. PubMed ID: 36714803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Handover Control for Human-Robot and Robot-Robot Collaboration.
    Costanzo M; De Maria G; Natale C
    Front Robot AI; 2021; 8():672995. PubMed ID: 34026858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.